The Chemistry Maths Book, Second Edition

(Grace) #1

5.2 The indefinite integral 131


EXAMPLE 5.2Find subject to conditions (i)(x, 1 y) 1 = 1 (2, 1 0), (ii)y 1 = 110


whenx 1 = 13.


We have. Then


(i) 0 1 = 12


2

1 + 1 C,C 1 = 1 −4,y 1 = 1 x


2

1 − 1 4 (ii) 10 1 = 13


2

1 + 1 C,C 1 = 1 1,y 1 = 1 x


2

1 + 11


0 Exercises 11, 12


Two rules


1.For a multiple of a function:


(5.6)


2.For a sum of functions:


(5.7)


It follows from these rules that the integral of a linear combination of functions,


f(x) 1 = 1 a 1 u(x) 1 + 1 bv(x) 1 + 1 cw(x) 1 +1- (5.8)


can be written as the sum of integrals


(5.9)


EXAMPLE 5.3Integral of a linear combination of functions


0 Exercises 13–15


=× + ×−










−−


( )


+= −



3


4


2


1


3


3


3


4


2


3


4

4

x


xeCx


x

cos coos 3xe C


x

++



ZZ 323 3 2 3ZZ


33

x x e dx x dx x dx e dx


xx

+−


( )


=+ −


−−

sin sin


ZZZZfxdxauxdxb xdxc xdx() =++ +() vw() () 


ZZZux x dx ux dx() ()+ () ()x dx








vv=+


ZZau x dx a u x dx() = ()


yxdxxC==+Z 2


2

yxdx=Z 2

Free download pdf