5.2 The indefinite integral 131
EXAMPLE 5.2Find subject to conditions (i)(x, 1 y) 1 = 1 (2, 1 0), (ii)y 1 = 110
whenx 1 = 13.
We have. Then
(i) 0 1 = 12
2
1 + 1 C,C 1 = 1 −4,y 1 = 1 x
2
1 − 1 4 (ii) 10 1 = 13
2
1 + 1 C,C 1 = 1 1,y 1 = 1 x
2
1 + 11
0 Exercises 11, 12
Two rules
1.For a multiple of a function:
(5.6)
2.For a sum of functions:
(5.7)
It follows from these rules that the integral of a linear combination of functions,
f(x) 1 = 1 a 1 u(x) 1 + 1 bv(x) 1 + 1 cw(x) 1 +1- (5.8)
can be written as the sum of integrals
(5.9)
EXAMPLE 5.3Integral of a linear combination of functions
0 Exercises 13–15
=× + ×−
−−
( )
+= −
−
3
4
2
1
3
3
3
4
2
3
4
4
x
xeCx
x
cos coos 3xe C
x
++
−
ZZ 323 3 2 3ZZ
33
x x e dx x dx x dx e dx
xx
+−
( )
=+ −
−−
sin sin
ZZZZfxdxauxdxb xdxc xdx() =++ +() vw() ()
ZZZux x dx ux dx() ()+ () ()x dx
vv=+
ZZau x dx a u x dx() = ()
yxdxxC==+Z 2
2