The Chemistry Maths Book, Second Edition

(Grace) #1

150 Chapter 5Integration


whereR 1 = 1 r


1

1 + 1 r


2

is the distance between the masses. The moment of inertia is then


where the quantity μ 1 = 1 m


1

m


2

2 (m


1

1 + 1 m


2

)is the reduced massof the system of two


masses (see also Example 1.18). The moment of inertia about the centre of mass of a


system of two masses is therefore the same as the moment of inertia of a single mass μ


at distance Rfrom the centre of mass.


0 Exercise 50


The continuous case


Consider a continuous mass distribution such as a straight rod of matter of length l


(Figure 5.18).


Let the mass in the segment xtox 1 + 1 ∆xbe∆m, so that∆m 2 ∆xis the mass per unit


length in the segment. If the mass is distributed evenly over the length, then∆m 2 ∆x


is independent of the choice of segment. It is then the density(or, more correctly, the


linear mass density) ρof the body, a constant throughout the length. In this case, the


total mass isM 1 = 1 ρl. If the mass of the rod is notevenly distributed over its length,


then ∆m 2 ∆xis the average densityin the segmentxtox 1 + 1 ∆x, and its value depends


on the position of the segment and on its length. As this length is reduced to zero, the


ratio approaches the limit


(5.43)


The value of the functionρ(x)at each point is the density at that point, and the


differential quantitydm 1 = 1 ρ(x)dxis the mass of a segmentdxatx. The total mass of


the body is then


(5.44)


Therefore, when a discrete mass distribution is replaced by a continuous distribution,


the sums of the discrete case are replaced by integrals. Thus, the average density is


(5.45)
ρ

ρ


==


M


l


xdx


dx


l

l

Z


Z


0

0

()


Mdm xdx


M

l

==ZZ


00

ρ()


ρ( ) limx


m


x


dm


dx


x


=








=


→∆




0


Imr mr


mm


mm


=+ = RR






=


11

2

22

2
12

12

22

μ


................................................................................................................................................. .........................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................................................................................................................................

...

..

...

..

...

..

...

.

...

..

...

..

...

..

...

.

...

..

...

..

...

..

...

.

...

..

...

..

...

..

...

0 x x+∆ x l


∆ m


x


...
.......
.......
.......
........
.......
.......
.......
.....

.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


Figure 5.18

Free download pdf