The Chemistry Maths Book, Second Edition

(Grace) #1

184 Chapter 6Methods of integration


gives


(6.33)


wheref(θ)in terms of tis a rational function of t.


0 Exercise 72


EXAMPLE 6.21Examples of the substitutiont 1 = 1 tan 1 θ 22.


(i)


(ii)


making use of standard integral 5 in Table 6.3.


0 Exercises 73–75


This method can be applied in all cases but is not always the simplest in practice.


For example, the application of the method to the integration of the elementary


trigonometric functions sin 1 θand cos 1 θis considerable more complicated than the


use of the standard integrals.


6.7 Parametric differentiation of integrals


Consider the indefinite integral


The integral can be treated as a function of the parameter α; differentiation then


gives


d


d


edx


d


d


eC


x


e


xx

ααα
α

α


αα

Z


−−

=− +








=+








11


2

−−αx

Zedx e C


−−xx

=− + , ≠


αα

α


α


1


() 0


=



















1


4


22


22


ln


tan


tan


θ


θ


C


=



=















Z +


dt


t


t


t


C


4


1


4


2


2


2

ln


ZZ


d


t


t


t


θ


35 θ


2


1


35


1


1


2

2

2





=






























cos





=



dt


t


Z dt


2


82


2

ZZ Z


d


t


t


t


dt


t


d


θ


sinθ


=


























=


2


1


2


1


1


22

tttC=+=ln ln tanθ 2 +C


ZZfd


f


t


() dt


()


θθ


θ


=






2


1


2
Free download pdf