The Chemistry Maths Book, Second Edition

(Grace) #1

210 Chapter 7Sequences and series


Substitution into (7.19) then gives


(7.20)


This power series is called the MacLaurin series


expansionof the functionf(x).


The MacLaurin series is an expansion of the function


f(x) about the pointx 1 = 10 (Figure 7.2); that is, the value


of the function at point xis expressed in terms of the


values of the function and its derivatives atx 1 = 10. For


this to be possible the function and its derivatives


must exist atx 1 = 10 andthroughout the interval 0 to x. In


addition, the expansion is valid only within the radius of


convergence of the series.


Examples of MacLaurin series



  1. The binomial series


11

The binomial series is the MacLaurin expansion of the function(1 1 + 1 x)


a

for arbitrary


values of a. We have


f(x) = 1 (1 1 + 1 x)


a

f′(x) 1 = 1 a(1 1 + 1 a)


a− 1

f′′(x) 1 = 1 a(a 1 − 1 1)(1 1 + 1 x)


a− 2

f′′′(x) 1 = 1 a(a 1 − 1 1)(a 1 − 1 2)(1 1 + 1 x)


a− 3





f


(n)

(x) 1 = 1 a(a 1 − 1 1)(a 1 − 1 2)=(a 1 − 1 n 1 + 1 1)(1 1 + 1 x)


a−n





Whenx 1 = 10 , the factor(1 1 + 1 x)


a−n

is replaced by 1,


f(0) 1 = 1 1, f′(0) 1 = 1 a, f′′(0) 1 = 1 a(a 1 − 1 1), f′′′(0) 1 = 1 a(a 1 − 1 1)(a 1 − 1 2), =


and the MacLaurin expansion is


(7.21)
()

() ()( )


11


1


2


12


3


23

+=++



!






−−


!


xax +


aa


x


aa a


x


a




fx f


x


f


x


f


x


() ()=+() () f ()


!


′ +


!


′′ +


!


0 ′′′ +


1


0


2


0


3


0


23

==


!


=


n

n

n

x


n


f


0

0



()

()


..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

..









0 x


x


f(0)


f(x)


.

.....

....

....

.....

....

....

....

....

....

....

.....

...

....

....

....

....

....

...

....

....

....

...

....

...

....

....

...

....

...

....

...

....

...

...

....

...

....

...

...

....

...

...

....

...

...

...

....

...

...

...

....

...

...

...

...

...

...

...

....

...

...

...

...

...

...

...

...

...

...

...

...

...

..

................................................

..

...

...

..

...

...

...

..

...

...

..

...

...

..

...

...

..

...

...

..

...

...

..

...

...

..

...

.

..

..

...

.

..

.

....


........


.......


.......


........


.......


........


........


........


.......


.......


.......


........


......


.......


.......


.........


......


.......


.......


......


........


......


.......


.......


.......


.......


.......


......


......


.......


.......


......


.......


......


......


..


Figure 7.2


11

The binomial theorem (series) was discovered by Newton in 1665 and described in 1676 in letters written to


Henry Oldenburg, secretary of the Royal Society, for transmission to Leibniz. The theorem was published by


Wallis in his Algebraof 1685.

Free download pdf