The Chemistry Maths Book, Second Edition

(Grace) #1

212 Chapter 7Sequences and series


(iii)


For example, ifx 1 = 11 , using the first five terms of the series,


≈ 1 × 1 1.06065941 1 ≈ 1 2.999998



  1. Trigonometric functions


The trigonometric functions sin 1 x, cos 1 xand tan 1 xhave continuous derivatives at


x 1 = 10 , and can be expanded as MacLaurin series. For example, for the sine function,


f(x) 1 = 1 sin 1 x, f′(x) 1 = 1 cos 1 x, f′′(x) 1 = 1 −sin 1 x, f′′′(x) 1 = 1 −cos 1 x, -


f(0) 1 = 1 0, f′(0) 1 = 1 1, f′′(0) 1 = 1 0, f′′′(0) 1 = 1 −1, -


Then


Comparison with the exponential series shows that the sine series converges for all


values of x.



  1. The logarithmic function


The function ln 1 xcannotbe expanded as a power series in xbecause the function


and all its derivatives are discontinuous atx 1 = 10. However, the functionln(1 1 + 1 x)is


well behaved atx 1 = 10 :


f(x) 1 = 1 ln(1 1 + 1 x) f(0) 1 = 10


f′(x) f′(0) 1 = 11


f′′(x) f′′(0) 1 = 1 − 1


f′′′(x) f′′′(0)= 12


f′′′′(x) f′′′′(0) 1 = 1 −3!


--


=



()+x


6


1


4

=


()+x


2


1


3

=



()+x


1


1


2

=


+x


1


1


sinxx


xxx


=−


!






!



!






357

357





8


981


1


16


1


512


1


8192


5


524288


=+−+− +










=+−+− +










81


16 512 8192


5


524288


23 4

xx x x









()



()



()
















1

2

1

2

3

2

3

38!


x





()881


8


81


1


28


12

12 1

+=+








=+














x +


xx
22

1

2

2

28


()



()












!


x

Free download pdf