The Chemistry Maths Book, Second Edition

(Grace) #1

214 Chapter 7Sequences and series


(7.24)


This power series in(x 1 − 1 a)is called a Taylor series expansionof the functionf(x).


The verification and conditions of existence of the Taylor series are as for the


MacLaurin series.


EXAMPLE 7.13Taylor series


(i) Expandx


4

about the pointx 1 = 11.


We have


f(x) 1 = 1 x


4

, f′(x) 1 = 14 x


3

, f′′(x) 1 = 141 × 13 x


2

, f′′′(x) 1 = 1 4!x, f′′′′(x) 1 = 1 4!,


f


(n)

(x) 1 = 1 0 if n 1 > 14


f′′′′(1) 1 =4!


Therefore,


(ii) Expand cos 1 xaboutx 1 = 1 π 22.


f(x) 1 = 1 cos 1 x, f′(x) 1 = 1 −sin 1 x, f′′(x) 1 = 1 −cos 1 x, f′′′(x) 1 = 1 sin 1 x, =


f(π 2 2) 1 = 1 0, f′(π 2 2) 1 = 1 −1, f′′(π 2 2) 1 = 1 0, f′′′(π 2 2) 1 = 1 1, =


Therefore


0 Exercises 68–71


7.7 Approximate values and limits


The MacLaurin and Taylor series provide a systematic tool for approximating


functions in the form of polynomials. Consider, for example, the logarithmic series


ln( ) 1


234


11


234

+=−+−+, −<≤+xx


xxx


 x


cos ( )


!!!


xx=−−+−−−+−ππ π π2( 2)( 2) ( 2x x x


35

1


3


1


5


1


7


))


7

+


xxx


42

1


4


1


1


4


2


1


4


=+ − + − +






















() ()


33


11


34











()()xx−+−


ff f f() , ()


!


!


,()


!


!


,()


!


!


11 1 ,


4


3


1


4


2


1


4


1


= ′ = ′′ = ′′′ =


=



!


=


n

n

n

xa


n


fa


0


()


()


()

fx fa


xa


fa


xa


fa


xa


() ()


()


()


()


()


()


=+



!


′ +



!


′′ +



12


2 33

3!


fa′′′()+

Free download pdf