7.9 Exercises 221
EXAMPLE 7.17Differentiation and integration of power series
0 Exercises 79, 80
7.9 Exercises
Section 7.2
Find (a) the general term and (b) the recurrence relation for the sequences:
1.1, 4, 7, 10,= 2.1, 3, 9, 27,= 3.
Find the first 6 terms of the sequences:
8.u
n+ 2
1 = 1 u
n+ 1
1 + 12 u
n
; u
0
1 = 1 1, u
1
1 = 13 9.u
n+ 2
1 = 13 u
n+ 1
1 − 12 u
n
; u
0
1 = 1 1, u
1
1 = 1122
10.u
n+ 2
1 = 13 u
n+ 1
1 − 12 u
n
; u
0
1 = 1 u
1
Find the limitr 1 → 1 ∞for:
- 2
r
17.Find the limit of the sequence{u
n+ 1
2 u
n
}foru
n+ 2
1 = 1 u
n+ 1
1 + 12 u
n
; u
0
1 = 11 , u
1
1 = 13
(see Exercise 8).
Section 7.3
Find the sum of (i)the first nterms, (ii)the first 10 terms:
11 + 151 + 191 + 1131 +1- 19. 31 − 121 − 171 − 1121 −1- 20. 11 + 131 + 191 + 1271 +1-
Find the sum of the first nterms:
22.x
3
1 + 1 x
5
1 + 1 x
7
1 +1- 23.x 1 + 12 x
2
1 + 14 x
3
1 +1-
1
1
3
1
9
1
27
+++ +
331
561
2
2
rr
rr
++
−−
r
rr
2
++ 1
r
r+ 2
1
r+ 2
1
3
r
w
w
w
n
n
n
+
==
11
u 1;
xx
x...
x
=
=, , ,
1
2
123
()
;
v
n
n
= n...
=,,,
2
3
; 012
uu u
rr+
=+ =
11
1
2
0;
1
1
5
1
25
1
125
,− , ,− ,...
=++++++=− −+cx
xxxx
xc
2345
2345
ln( ) 1
ZZ
1
1
1
234
−
= +++++
x
dx ()x x x x dx
=+ + + + =
−
12 3 4
1
1
23
2
xx x
x
()
d
dx x
d
dx
xx x x
1
1
1
234
−
= +++++()