The Chemistry Maths Book, Second Edition

(Grace) #1

7.9 Exercises 221


EXAMPLE 7.17Differentiation and integration of power series


0 Exercises 79, 80


7.9 Exercises


Section 7.2


Find (a) the general term and (b) the recurrence relation for the sequences:


1.1, 4, 7, 10,= 2.1, 3, 9, 27,= 3.


Find the first 6 terms of the sequences:
















8.u


n+ 2

1 = 1 u


n+ 1

1 + 12 u


n

; u


0

1 = 1 1, u


1

1 = 13 9.u


n+ 2

1 = 13 u


n+ 1

1 − 12 u


n

; u


0

1 = 1 1, u


1

1 = 1122


10.u


n+ 2

1 = 13 u


n+ 1

1 − 12 u


n

; u


0

1 = 1 u


1

Find the limitr 1 → 1 ∞for:





    1. 2




r

















17.Find the limit of the sequence{u


n+ 1

2 u


n

}foru


n+ 2

1 = 1 u


n+ 1

1 + 12 u


n

; u


0

1 = 11 , u


1

1 = 13


(see Exercise 8).


Section 7.3


Find the sum of (i)the first nterms, (ii)the first 10 terms:




  1. 11 + 151 + 191 + 1131 +1- 19. 31 − 121 − 171 − 1121 −1- 20. 11 + 131 + 191 + 1271 +1-






Find the sum of the first nterms:


22.x


3

1 + 1 x


5

1 + 1 x


7

1 +1- 23.x 1 + 12 x


2

1 + 14 x


3

1 +1-


1


1


3


1


9


1


27


+++ +


331


561


2

2

rr


rr


++


−−


r


rr


2

++ 1


r


r+ 2


1


r+ 2


1


3


r

w


w


w


n

n

n


+

==


11

u 1;


xx


x...


x

=






=, , ,


1


2


123


()


;


v


n

n

= n...








=,,,


2


3


; 012
uu u

rr+

=+ =


11

1


2


0;


1


1


5


1


25


1


125


,− , ,− ,...


=++++++=− −+cx


xxxx


xc


2345

2345


 ln( ) 1


ZZ


1


1


1


234








= +++++


x


dx ()x x x x dx


=+ + + + =



12 3 4


1


1


23

2

xx x


x





()


d


dx x


d


dx


xx x x


1


1


1


234







= +++++()

Free download pdf