The Chemistry Maths Book, Second Edition

(Grace) #1

8.2 Algebra of complex numbers 227


EXAMPLES 8.2Multiplication


(i)(2 1 + 13 i)(3 1 + 14 i) 1 = 1 2(3 1 + 14 i) 1 + 13 i(3 1 + 14 i) 1 = 161 + 18 i 1 + 19 i 1 + 112 i


2

1 = 1 − 61 + 117 i


(ii)i(2 1 − 13 i) 1 = 12 i 1 − 13 i


2

1 = 131 + 12 i


0 Exercises 4–7


The complex conjugate


Ifz 1 = 1 x 1 + 1 iyis an arbitrary complex number then the number obtained from it by


replacing iby−iis


z* 1 = 1 x 1 − 1 iy (8.9)


and is called the complex conjugateof z(sometimesGis used instead ofz*). zis then


also the complex conjugate ofz. The conjugate pair of complex numbers zandz


has the following properties:


(i) (8.10)


(ii) (8.11)


(iii)zz* 1 = 1 (x 1 + 1 iy)(x 1 − 1 iy) 1 = 1 x


2

1 + 1 y


2

(real and positive) (8.12)


EXAMPLES 8.3Conjugate pairs of complex numbers


(i) Ifz 1 = 121 + 13 ithenz* 1 = 121 − 13 iand


(ii) Ifz 1 = 111 − 1 ithenz* 1 = 111 + 1 iand


(iii) Solve the quadratic equationz


2

1 − 13 z 1 + 141 = 10 (see Example 2.18).


zi=


±−


=±−















3916


2


1


2


37


1


2


37


1


2


1


1


2


()zz+ =, ()zz i zz− =−, *=+= 112


1


2


2


1


2


32313


22

() ()zz+=, zz i zz−=, *=+=


1


2


1


2


(*) ( )( )z z−= +−−x iy x iy iy i z()








==Im


1


2


1


2


(*) ( )( )zz+= ++−xiy xiy x z()








==Re

Free download pdf