8.4 Complex functions 235
Therefore,
cos 15 θ 1 = 1 cos
5
1 θ 1 − 1101 cos
3
1 θ 1 sin
2
1 θ 1 + 151 cos 1 θ 1 sin
4
1 θ 1 = 1161 cos
5
1 θ 1 − 1201 cos
3
1 θ 1 + 151 cos 1 θ
sin 15 θ 1 = 1 sin
5
1 θ 1 − 1101 sin
3
1 θ 1 cos
2
1 θ 1 + 151 sin 1 θ 1 cos
4
1 θ 1 = 1161 sin
5
1 θ 1 − 1201 sin
3
1 θ 1 + 151 sin 1 θ
and the final expressions have been obtained by using the formulasin
2
1 θ 1 + 1 cos
2
1 θ 1 = 11.
0 Exercises 25–27
8.4 Complex functions
Letg(x)andh(x)be (real) functions of the real variable x. A complex function of x
is then
f(x) 1 = 1 g(x) 1 + 1 ih(x) (8.29)
where. Such a function differs in no essential way from a real function of one
variable, except that the possible values of the function are complex numbers. The
discussion of the properties of complex numbers applies to complex functions; for
example, the complex conjugate functionf*(x)is defined by
f*(x) 1 = 1 g(x) 1 − 1 ih(x) (8.30)
with property
f(x)f*(x) 1 = 1 |f(x)|
2
1 = 1 g(x)
2
1 + 1 h(x)
2
(8.31)
where|f(x)|is the modulus of the function. The quantityff*plays an important
role in wave theories, when the wave function is complex.
EXAMPLE 8.8
(i) Express the complex functionf(x) 1 = 12 x
2
1 + 1 (7 1 + 12 i)x 1 − 1 (4 1 + 1 i)in the formf(x) 1 =
g(x) 1 + 1 ih(x), whereg(x)andh(x)are real. (ii) Solveg(x) 1 = 10 ,h(x) 1 = 10 , thenf(x) 1 = 10.
(iii) Find|f(x)|
2
(i)f(x) 1 = 1 (2x
2
1 + 17 x 1 − 1 4) 1 + 1 i(2x 1 − 1 1)
(ii) g(x) 1 = 12 x
2
1 + 17 x 1 − 141 = 1 (2x 1 − 1 1)(x 1 + 1 4) 1 = 10 whenx 1 = 1122 andx 1 = 1 − 4
h(x) 1 = 12 x 1 − 111 = 10 whenx 1 = 1122
Thereforef(x) 1 = 10 whenx 1 = 1122
(iii)|f(x)|
2
1 = 1 g(x)
2
1 + 1 h(x)
2
1 = 14 x
4
1 + 128 x
3
1 + 137 x
2
1 − 160 x 1 + 117
0 Exercise 28
i=− 1