The Chemistry Maths Book, Second Edition

(Grace) #1

8.4 Complex functions 235


Therefore,


cos 15 θ 1 = 1 cos


5

1 θ 1 − 1101 cos


3

1 θ 1 sin


2

1 θ 1 + 151 cos 1 θ 1 sin


4

1 θ 1 = 1161 cos


5

1 θ 1 − 1201 cos


3

1 θ 1 + 151 cos 1 θ


sin 15 θ 1 = 1 sin


5

1 θ 1 − 1101 sin


3

1 θ 1 cos


2

1 θ 1 + 151 sin 1 θ 1 cos


4

1 θ 1 = 1161 sin


5

1 θ 1 − 1201 sin


3

1 θ 1 + 151 sin 1 θ


and the final expressions have been obtained by using the formulasin


2

1 θ 1 + 1 cos


2

1 θ 1 = 11.


0 Exercises 25–27


8.4 Complex functions


Letg(x)andh(x)be (real) functions of the real variable x. A complex function of x


is then


f(x) 1 = 1 g(x) 1 + 1 ih(x) (8.29)


where. Such a function differs in no essential way from a real function of one


variable, except that the possible values of the function are complex numbers. The


discussion of the properties of complex numbers applies to complex functions; for


example, the complex conjugate functionf*(x)is defined by


f*(x) 1 = 1 g(x) 1 − 1 ih(x) (8.30)


with property


f(x)f*(x) 1 = 1 |f(x)|


2

1 = 1 g(x)


2

1 + 1 h(x)


2

(8.31)


where|f(x)|is the modulus of the function. The quantityff*plays an important


role in wave theories, when the wave function is complex.


EXAMPLE 8.8


(i) Express the complex functionf(x) 1 = 12 x


2

1 + 1 (7 1 + 12 i)x 1 − 1 (4 1 + 1 i)in the formf(x) 1 =


g(x) 1 + 1 ih(x), whereg(x)andh(x)are real. (ii) Solveg(x) 1 = 10 ,h(x) 1 = 10 , thenf(x) 1 = 10.


(iii) Find|f(x)|


2

(i)f(x) 1 = 1 (2x


2

1 + 17 x 1 − 1 4) 1 + 1 i(2x 1 − 1 1)


(ii) g(x) 1 = 12 x


2

1 + 17 x 1 − 141 = 1 (2x 1 − 1 1)(x 1 + 1 4) 1 = 10 whenx 1 = 1122 andx 1 = 1 − 4


h(x) 1 = 12 x 1 − 111 = 10 whenx 1 = 1122


Thereforef(x) 1 = 10 whenx 1 = 1122


(iii)|f(x)|


2

1 = 1 g(x)


2

1 + 1 h(x)


2

1 = 14 x


4

1 + 128 x


3

1 + 137 x


2

1 − 160 x 1 + 117


0 Exercise 28


i=− 1

Free download pdf