The Chemistry Maths Book, Second Edition

(Grace) #1

9.3 Partial differentiation 251


EXAMPLES 9.2Partial differentiation


(i) f(x,y,z) 1 = 1 x


2

1 + 12 y


2

1 + 13 z


2

1 + 14 xy 1 + 15 xz 1 + 16 yz


(ii) f(x,y) 1 = 1 (x


2

1 + 12 y


2

)


122

Letf 1 = 1 u


122

whereu 1 = 1 x


2

1 + 12 y


2

. Then, by the chain rule,


(iii) f(x,y) 1 = 1 y 1 sin(x


2

1 + 1 y


2

)


By the chain rule,


To find , letf 1 = 1 u 1 × 1 vwhereu 1 = 1 yandv 1 = 1 sin(x


2

1 + 1 y


2

). Then, by the product


rule,


0 Exercises 3–7


Higher derivatives


Like the derivative of a function of one variable (Section 4.9), the partial derivative


of a function of more than one variable can itself be differentiated if it satisfies the


necessary conditions of continuity and smoothness. For example, the cubic function


in two variables


z 1 = 1 x


3

1 + 12 x


2

y 1 + 13 xy


2

1 + 14 y


3

has partial first derivatives




=++,




=++


z


x


xxyy


z


y


343 2612 xxyy


22 2 2

=+++ 2


222 22

yxy xycos( ) sin( )










=× + + +


f


y


u


y


u


y


yy xy xy


v


v 2


22 22

cos( ) sin( ))× 1




f


y




=+


f


x


2 xy x y


22

cos( )







=×=+


−−

f


y


df


du


u


y


uyyxy


1


2


42 2


12 2 2 12

()







=×=+


−−

f


x


df


du


u


x


uxxxy


1


2


22


12 2 2 12

()




=++,




=++,




=++


f


x


xyz


f


y


yxz


f


z


245 446 656 zxy

Free download pdf