9.8 Line integrals 277
(see Example 6.10 for ). The result is different from that obtained in
Example 9.23.
0 Exercises 59, 60
The dependence of the line integral on the path can be understood, for example, in
terms of the work done on a body in moving it from A to B along the path. From the
discussion of work and potential energy in Section 5.7, we expect the work done to
depend on the path when the forces acting on the body are not conservative forces;
for example, when work is done against friction. In particular, net work is done
in moving the body around a closed path. A dependence on path is also found in
thermodynamics.
EXAMPLE 9.25Work in thermodynamics
When changes in a thermodynamic system are reversible (Section 5.8), the quantity
TdSin equation (9.40),
dU 1 = 1 TdS 1 − 1 pdV
is identified with the heat absorbed by the system, andpdVwith the (mechanical)
work done by the system. We consider the work done by the ideal gas on (i) expansion
fromV
11 = 1 V(p
1, T
1), at point A in Figure 9.10, along pathC
11 + 1 C
2toV
21 = 1 V(p
2, T
2)
at point B, and (ii) the return to A alongC
31 + 1 C
4.
(i) PathC
11 + 1 C
2The work done along path C
1is at constant pressurep 1 = 1 p
1and, by equation (5.71),
W
11 = 1 nR(T
21 − 1 T
1).
The work done along path C
2is at constant temperatureT 1 = 1 T
2and, by equation
(5.72),
W
21 = 1 −nRT
21 ln(p
22 p
1).
Z
0121 −xdx
0 T
1T
2p
1p
2a
b
c
1c
2c
3c
4T
p
............................................................................................................................................
..........
.........
.........
..........
.......
.....
.....
............
.....
.....
.......
.......
.........
..........
.........
..........
.
......
.....
.....
..............
.....
.....
......
........................................................................................................................................................................................................................................................................................................
......
....
.....
......
....
.....
......
.....
....
......
.....
....
......
.....
....
......
.....
....
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
..
...
......
....
.....
......
....
.....
......
.....
....
......
.....
....
......
.....
....
......
.....
....
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.......................................................................................................................................................................................................................................................................................................
Figure 9.10
