9.11 Change of variables 287
The integral (9.59) is then
EXAMPLE 9.31Evaluate the integral off(r, 1 θ) 1 = 1 e
−r2sin
21 θover (i) the area of a
circle of radius aand (ii) the whole plane.
(i)
Because the integrand is the product of a function of rand a function of θ,
e
−r2sin
2θr 1 = 1 (e
−r2r)(sin
2θ)
and because the limits of integration are constants, the double integral can be
factorized:
Because
and, using the substitutionu 1 = 1 r
2, du 1 = 12 rdr,
Therefore,
(ii) Lettinga 1 → 1 ∞,
0 Exercises 69–71
ZZ
020222
ππ
∞erdrd
−rsin θθ=
Ie
a=−
(
)−π
2
1
2ZZ
0002221
2
1
2
1
2
1
arauuaerdr edu e
−−−==−
=−ee
−a( )
2ZZ
022021
2
12
1
2
1
2
2
ππsin θθdd=− =−( cos )θ θ θ sin θ
=
02 ππ
sin ( cos ),
2 12θθ=− 12
Ierdr d
ar=×
−ZZ
00222πsin θθ
ZZZ
Re dA e rdrd
ra−−r=
2220202sin θθsin θ
πI e rdrd d e rdr e
arara==×=−
−−−ZZ Z Z
02002021
ππθθ π (aa+