9.12 Exercises 293
63.Evaluate on the circle with parametric equationsx 1 = 1 cos 1 θ,
y 1 = 1 sin 1 θ, (i)from A(1, 0) to B( 0, 1) and (ii)around a complete circle (θ 11 = 101 → 12 π).
(iii)Confirm that the differential 2 xy dx 1 + 1 (x
2
1 − 1 y
2
) dyis exact.
Sections 9.9
64.Evaluate the integral and show that the result is independent of
the order of integration.
65.Evaluate the integral
Sections 9.10
Evaluate the integral and sketch the region of integration:
- (i)Show from a sketch of the region of integration that
,
(ii)evaluate the integral.
Section 9.11
Transform to polar coordinates and evaluate:
- ZZ
0
∞
0
∞
e x dx dy
−+()xy222
ZZ
−−
−+
∞
∞
∞
∞
exydxdy
222 xy 32212()
ZZ ()
0
1
0
1
2
22
−
x()xxydydx
ZZ ZZ Z Z
0
2
24
22
3
0
1
0
22
3
4
0
yyxx dx dy x dy dx
−
−−
−
=+
()/
00
42
3
()/xxdydx
+
ZZ
00
2
22a axxy dydx
−
ZZ
0
22
22
xx()x y dyd+ x
ZZ
00
2
π
Rredrd
−
cos sinθθ θ.
ZZ
0
3
1
2
22
()x y xy dxdy+
Z
C
2
22
xy dx x y dy+−
()