296 Chapter 10Functions in 3 dimensions
The conversion from cartesian coordinates to spherical polar coordinates makes use
of the following relations:
(10.2)
in which the inverse functions have their principal values (see Section 3.5).
EXAMPLE 10.2Find the spherical polar coordinates of the point(x, y, z) 1 = 1 (−1, 2, −3).
r
21 = 1 x
21 + 1 y
21 + 1 z
21 = 1 14, 1 r 1 = 1
θ 1 = 1 cos
− 1(z 2 r) 1 = 11 ≈ 1 143.3°
φ 1 = 1 tan
− 1(y 2 x) 1 + 1 π 1 = 1 tan
− 1(−2) 1 + 1 π 1 ≈ 1 116.6°
0 Exercises 4–9
10.3 Functions of position
A function of position, or field, is a function of the three coordinates within some
region of three-dimensional space. Let the region V(for volume) in Figure 10.3
represent, for example, a body with non-uniform temperature; the temperature is
a function of position,
T 1 = 1 f(x, 1 y, 1 z)
Then, if the cartesian coordinates of the point Pare
(x
p, y
p, z
p), the temperature at this point is
T
p1 = 1 f(x
p, y
p, z
p)
For example, iff(x, 1 y, 1 z) 1 = 1 z
21 − 1 x
21 − 1 y
2then
T
p1 = 1 z
2p1 − 1 x
2p1 − 1 y
2pThe temperature at a point cannot depend on the particular system of coordinates
used to specify the position of the point. If the spherical coordinates at P are (r
p, 1 θ
p, 1 φ
p)
then, by equations (10.1),
T
p1 = 1 r
p21 cos
21 θ
p1 − 1 r
p21 sin
21 θ
p1 cos
21 φ
p1 − 1 r
p21 sin
21 θ
p1 sin
21 φ
p1 = 1 r
p2(cos
21 θ
p1 − 1 sin
21 θ
p)
cos ( )
−−
1314
14
rxyz
z
r
y
x
2222 11=++, =
,=
−−θφcos
tan iif
if
x
y
x
x
+<
−0
0
1tan π
.............................................................................................................................................p
...............................................................................................................................................................................................................................................................................................................................................................
..
...
....
..
...
....
..
...
....
...
..
....
...
..
....
...
..
....
...
..
....
...
...
...
...
.z
y
x
V
.....
.........
...........
...............
.....................
................................................................
........................
...................
..............
............
............
..........
.........
..........
........
........
........
.......
.......
.......
.......
......
......
.......
.....
......
......
.....
......
.....
.....
.....
.....
.....
......
....
.....
......
.....
.....
.....
......
.....
.......
......
.......
........
........
.........
............
..............
.....................
...............................................................
........................
.................
................
............
...........
...........
..........
........
..........
.......
........
........
.......
......
........
......
......
......
......
.....
......
......
.....
.....
.....
.....
......
.....
....
......
.....
.....
.....
.....
.....
......
......
......
.......
......
.......
.....
Figure 10.3