The Chemistry Maths Book, Second Edition

(Grace) #1

356 Chapter 12Second-order differential equations. Constant coefficients


It follows therefore that


(12.58)


The functions are said to be orthogonal. For normalizedwave functions, when


we can write


(12.59)


The quantity δ


mn

, equal to 1 if m 1 = 1 n(normalization) and equal to 0 if m 1 ≠ 1 n


(orthogonality), is called the Kronecker delta. Functions that satisfy (12.59) are said


to be orthonormal(orthogonal and normalized).


0 Exercise 26


12.7 The particle in a ring


The Schrödinger equation for a particle of mass mmoving freely in


a circle of radius ris, Figure 12.7,


(12.60)


where Eis the (positive) kinetic energy of the particle andI 1 = 1 mr


2

is


its moment of inertia with respect to the centre of the circle. Setting


(12.61)


we have


(12.62)


with general solution, in exponential form


ψ(θ) 1 = 1 c


1

e


iωθ

1 + 1 c


2

e


−iωθ

(12.63)


For the wave function to be continuous around the circle, it must satisfy the periodic


boundary condition


ψ(θ 1 + 12 π) 1 = 1 ψ(θ) (12.64)


d


d


2

2

2

0


ψ


ωψ


θ


+=


ω


2

2

2


=


IE






ψ


θ ψ


θ


θ


() θ


()


=− = ()





22

2

2 I


d


d


E


Z


0

1


0


l

mn mn

xxdx


mn


mn


ψψ() () ==δ


=








if


if


Z


0

1


l

nn

ψψ() ()xxdx= ,


Z


0

0


l

mn

ψψ() ()xxdx=≠when mn


o






r


...

....

....

...

....

...

....

...

....

....

...

....

...

....

...

....

...

....

....

...

.

...

..

...

...

..

...

...

...

.

θ


....

.....

.....

.....

......

.....

.....

.....

.....

.....

......

.....

......

......

.....

......

.......

......

......

.......

.......

.........

.......

.........

..........

...........

.............

..................

.........................................................

.....................

.............

...........

..........

.........

.......

.........

......

.......

.......

......

......

.......

.....

......

......

.....

.....

......

.....

.....

.....

.....

.....

......

....

......

.....

....

......

.....

.....

.....

.....

.....

......

.....

.....

......

.....

.....

.......

.....

......

.......

......

......

........

.......

.......

..........

........

..........

.............

...............

..........................

............................

..........................

..............

..............

.........

.........

.........

........

.......

.......

.......

......

.......

......

.....

......

......

.....

......

.....

.....

......

.....

.....

.....

.....

.....

.....

.....

.

......

......

......

.....

......

......

...........

...............

.......

Figure 12.7

Free download pdf