356 Chapter 12Second-order differential equations. Constant coefficients
It follows therefore that
(12.58)
The functions are said to be orthogonal. For normalizedwave functions, when
we can write
(12.59)
The quantity δ
mn
, equal to 1 if m 1 = 1 n(normalization) and equal to 0 if m 1 ≠ 1 n
(orthogonality), is called the Kronecker delta. Functions that satisfy (12.59) are said
to be orthonormal(orthogonal and normalized).
0 Exercise 26
12.7 The particle in a ring
The Schrödinger equation for a particle of mass mmoving freely in
a circle of radius ris, Figure 12.7,
(12.60)
where Eis the (positive) kinetic energy of the particle andI 1 = 1 mr
2
is
its moment of inertia with respect to the centre of the circle. Setting
(12.61)
we have
(12.62)
with general solution, in exponential form
ψ(θ) 1 = 1 c
1
e
iωθ
1 + 1 c
2
e
−iωθ
(12.63)
For the wave function to be continuous around the circle, it must satisfy the periodic
boundary condition
ψ(θ 1 + 12 π) 1 = 1 ψ(θ) (12.64)
d
d
2
2
2
0
ψ
ωψ
θ
+=
ω
2
2
2
=
IE
Hψ
ψ
θ ψ
θ
θ
() θ
()
=− = ()
22
2
2 I
d
d
E
Z
0
1
0
l
mn mn
xxdx
mn
mn
ψψ() () ==δ
=
≠
if
if
Z
0
1
l
nn
ψψ() ()xxdx= ,
Z
0
0
l
mn
ψψ() ()xxdx=≠when mn
o
r
...
....
....
...
....
...
....
...
....
....
...
....
...
....
...
....
...
....
....
...
.
...
..
...
...
..
...
...
...
.
θ
....
.....
.....
.....
......
.....
.....
.....
.....
.....
......
.....
......
......
.....
......
.......
......
......
.......
.......
.........
.......
.........
..........
...........
.............
..................
.........................................................
.....................
.............
...........
..........
.........
.......
.........
......
.......
.......
......
......
.......
.....
......
......
.....
.....
......
.....
.....
.....
.....
.....
......
....
......
.....
....
......
.....
.....
.....
.....
.....
......
.....
.....
......
.....
.....
.......
.....
......
.......
......
......
........
.......
.......
..........
........
..........
.............
...............
..........................
............................
..........................
..............
..............
.........
.........
.........
........
.......
.......
.......
......
.......
......
.....
......
......
.....
......
.....
.....
......
.....
.....
.....
.....
.....
.....
.....
.
......
......
......
.....
......
......
...........
...............
.......
Figure 12.7