The Chemistry Maths Book, Second Edition

(Grace) #1

362 Chapter 12Second-order differential equations. Constant coefficients


By Table 12.1, case 1 , the choice of particular integral should bey


p

1 = 1 ke


− 2 x

, but this


is already a solution of the homogeneous equation. By prescription (a)therefore,


we use


y


p

1 = 1 kxe


− 2 x

Then


y′


p

1 = 1 ke


− 2 x

1 − 12 kxe


− 2 x

, y


p

′′ 1 = 1 − 4 ke


− 2 x

1 + 14 kxe


− 2 x

so that


y


p

′′ 1 + 13 y′


p

111 + 12 y


p

1 = 1 −ke


− 2 x

and this is equal toy


p

1 = 13 e


− 2 x

ifk 1 = 1 − 3. Theny


p

1 = 13 xe


− 2 x

and the general solution is


y(x) 1 = 1 y


h

(x) 1 + 1 y


p

(x) 1 = 1 c


1

e


−x

1 + 1 c


2

e


− 2 x

1 − 13 xe


− 2 x

0 Exercises 33, 34


EXAMPLE 12.15Find the general solution of the equationy′′ 1 − 14 y′ 1 + 14 y 1 = 1 e


2 x

.


By Example 12.4, the characteristic equation of the homogeneous equation has the


double rootλ 1 = 12 , and the complementary function is


y


h

(x) 1 = 1 (c


1

1 + 1 c


2

x)e


2 x

In this case, by prescription (b), the functiony


p

1 = 1 ke


2 x

is multiplied byx


2

. Then


y


p

1 = 1 kx


2

e


2 x

, y′


p

1 = 12 kxe


2 x

1 + 12 kx


2

e


2 x

, y


p

′′ 1 = 12 ke


2 x

1 + 18 kxe


2 x

1 + 14 kx


2

e


2 x

so that


y


p

′′ 1 − 14 y′


p

111 + 14 y


p

1 = 12 ke


2 x

and this is equal toe


2 x

whenk 1 = 1122. The general solution is therefore


0 Exercise 35


0 Exercises 36–38


yx y x y x c cx x e


hp

x

() () ()=+=++








12

22

1


2

Free download pdf