The Chemistry Maths Book, Second Edition

(Grace) #1

12.10 Exercises 365


x


p

(t)


t


Figure 12.9


0 Exercise 39


12.10 Exercises


Section 12.2


1.Show thate


− 2 x

ande


2 x 23

are particular solutions of the differential equation 3 y′′ 1 + 14 y′ 1 − 14 y 1 = 10.


2.Show thate


3 x

andxe


3 x

are particular solutions of the differential equationy′′ 1 − 16 y′ 1 + 19 y 1 = 10.


3.Show thatcos 12 xandsin 12 xare particular solutions of the differential equationy′′ 1 + 14 y 1 = 10.


Write down the general solution of the differential equation in


4.Exercise 1. 5.Exercise 2. 6.Exercise 3.


Section 12.3


Find the general solutions of the differential equations:


7.y′′ 1 − 1 y′ 1 − 16 y 1 = 10 8. 2 y′′ 1 − 18 y′ 1 + 13 y 1 = 10 9.y′′ 1 − 18 y′ 1 + 116 y 1 = 10



  1. 4 y′′ 1 + 112 y 1 + 19 y 1 = 10 11.y′′ 1 + 14 y′ 1 + 15 y 1 = 10 12.y′′ 1 + 13 y′ 1 + 15 y 1 = 10


Section 12.4


Solve the initial value problems:


















Solve the boundary value problems:














dy


dx


dy


dx


yy y


2

2

++=; =, =8160 0 1() ()01


dy


dx


yy xy x


2

2

+=; =90 0when = =0 1, when =π 2


dy


dx


dy


dx


yy y


2

2

++=; 480 () ( )ππ 24 =−,13 1=


dx


dt


dx


dt


xx


dx


dt


2

2

−+=; =, 2200100 () ()=


dx


dt


xx


dx


dt


2

2

+=;90 30 3 1()ππ=, ()=−


dx


dt


dx


dt


xx


dx


dt


2

2

++=; =,69010 11() ()=


dx


dt


dx


dt


xx


dx


dt


2

2

+−=;20 01 00()=, ()=

Free download pdf