13.3 The Frobenius method 373
EXAMPLE 13.3Indicial equations
(i)
We haveb
01 = 1 − 122 ,c
01 = 1122 , and the indicial equation isr
21 − 13 r 221 + 11221 = 10 with
rootsr
11 = 11 andr
21 = 1122.
(ii)x
2y′′ 1 + 1 xy′ 1 + 1 (x
21 − 112 4)y 1 = 10
This is the Bessel equation (see Table 13.1) forn 1 = 1122. We haveb(x) 1 = 111 = 1 b
0and
c(x) 1 = 1 x
21 − 1124 so thatc
01 = 1 − 124. Thenr
21 − 11241 = 1 (r 1 − 112 2)(r 1 + 112 2) 1 = 10 and the
indicial parameters arer 1 = 1 ± 12 2.
(iii)xy′′ 1 + 12 y′ 1 + 14 xy 1 = 10
We havex
2y′′ 1 + 12 xy′ 1 + 14 x
2y 1 = 10. Therefore,b(x) 1 = 121 = 1 b
0and c(x) 1 = 1 x
2so that
c
01 = 10. The indicial equation isr
21 + 1 (b
01 − 1 1)r 1 + 1 c
01 = 1 r
21 + 1 r 1 = 10 , with rootsr
11 = 10
andr
21 = 1 −1.
0 Exercises 6–9
Once the values of the indicial parameter have been determined, the solution of
the differential equation can proceed as in the power-series method. The general
solution is
y(x) 1 = 1 c
1y
1(x) 1 + 1 c
2y
2(x) (13.9)
in which c
1and c
2are arbitrary constants, andy
1(x)andy
2(x)are independent
particular solutions. At least one of y
1and y
2has the form (13.4), and the other
depends on the solutions,r
1andr
2, of the indicial equation. We have the following
three cases.
1 Distinct roots not differing by an integer
Bothy
1andy
2have the form (13.4),
y
1(x) 1 = 1 x
r1(a
01 + 1 a
1x 1 + 1 a
2x
21 +1-) (13.10a)
y
2(x) 1 = 1 x
r2(A
01 + 1 A
1x 1 + 1 A
2x
21 +1-) (13.10b)
2 Double root
Ifr
11 = 1 r
21 = 1 r, one solution has the form (13.4),
y
1(x) 1 = 1 x
r(a
01 + 1 a
1x 1 + 1 a
2x
21 +1-) (13.11a)
and the second solution is
y
2(x) 1 = 1 y
1(x) 1 ln 1 x 1 + 1 x
r+ 1(A
01 + 1 A
1x 1 + 1 A
2x
21 +1-) (13.11b)
xy xy y
21
2
1
2
′′− ′+= 0