380 Chapter 13Second-order differential equations. Some special functions
(b)
In this case, bothP
1
(x)andP
3
(x)are odd functions so that the orthogonality of
the functions is a new property, not a consequence of even 2 odd parity.
0 Exercise 19
The corresponding property of the associated Legendre functions is
(13.26)
In addition whenl 1 = 1 l′,
(13.27)
and this result is used to construct the set of normalizedassociated Legendre
functions (and normalized Legendre polynomials whenm 1 = 10 ),
(13.28)
with property
(13.29)
Whenx 1 = 1 cos 1 θthese functions form part of the solutions of the Schrödinger
equation for the hydrogen atom (Section 14.6).
EXAMPLE 13.9Show that (i)P
1
1
is orthogonal toP
3
1
, (ii)P
2
2
is orthogonal toP
2
3
.
(i)
IPxPxdx==−−xxd
−
+
−
+
ZZ
1
1
1
1
3
1
1
1
22
3
2
() () ( )( 151 )xx
Px x Px x x
1
1212
3
12122
1
3
2
() ( ) , () ( ) (=− = − 151 −)
Z
−
+
, ′,,′
==
= ′
≠ ′
1
1
1
0
ΘΘ
lm l m ll
xxdx
ll
ll
() () δ
if
if
Θ
lm l
m
x
llm
lm
Px
,
||
=
+−!
+!
()
()(||)
(||)
()
21
2
Z
−
+
||
( )
=
+!
−!
1
1
2
2
21
Pxdx
l
lm
lm
l
m
()
()
(||)
(||)
Z
−
+
||
′
||
=≠′
1
1
PxPxdx 0 ll
l
m
l
m
() () when
ZZ
−
+
−
+
−
+
=−=
1
1
13
1
1
42
1
1
1
2
53
1
2
P x P x dx() () (x x dx) xxx
53
1
2
−=−00 0
=