The Chemistry Maths Book, Second Edition

(Grace) #1

14.4 The particle in a rectangular box 395


and the partial differential equation (14.4) in two variables has been reduced to two


ordinary differential equations, both of which we can solve. The equations, (14.9) in


the variable xand (14.10) in the variable y, are separable first-order equations of the


kind discussed in Section 11.3, and they have general solutions


X(x) 1 = 1 Ae


Cx

, Y(y) 1 = 1 Be


−Cy

(14.11)


A solution of the equation (14.4) in two variables is then the product


f(x, 1 y) 1 = 1 X(x) 1 × 1 Y(y) 1 = 1 Ae


Cx

1 × 1 Be


−Cy

1 = 1 De


C(x−y)

(14.12)


0 Exercises 4–7


Particular solutions, including the possible values of the separation constant,


can often be obtained by the application of initial and boundary conditions, as


exemplified by the important problems discussed in Sections 14.4 to 14.6. In other


cases, as discussed in Section 14.7 for the vibrating string, it may be necessary to


consider more general solutions that are linear combinations of products.


14.4 The particle in a rectangular box


The Schrödinger equation for a particle of mass mmoving in the xy-plane is


(14.13)


where


(14.14)


is the two-dimensional Laplacian operator (see Section 9.6). For the present system,


the potential energy function is (Figure 14.1)


Vxy (14.15)


xa yb


(),=


<< <<







00 and 0for


∞ elsewhere


∇=










2

2

2

2

2

xy


−∇ ,+ , ,= ,





2

2

2 m


ψψψ()()() ()xy Vxy xy E xy


.............................................................................................................................................................................................................................................................................................................................

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

.

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

................................................................................................................................
..
..
...
...
..
...
..
..
...
...
..
...
..
..
...
...
..
...
..
..
...
...
..
...
..
..
...
...
..
...
..
..
...
...
..
...
..
..
...
...
..
...
..
.

V=∞ V=∞


V=∞


V=∞


V= 0


0 a


b


x


y


.....
.......
........
........

...

...

...

......
...
...
...

Figure 14.1

Free download pdf