The Chemistry Maths Book, Second Edition

(Grace) #1

398 Chapter 14Partial differential equations


that is, the degenerate eigenfunctions are interchanged (whenp 1 ≠ 1 q).*The symmetries


of some of the wave functions are illustrated in Figure 14.2.


The dashed lines are nodal lines, where the function is zero. We see that, for example,


ψ


1,2

andψ


2,1

are identical except for orientation.


0 Exercises 8–10


14.5 The particle in a circular box


The motion of a particle in a circular box of radius ais described by the Schrödinger


equation


(14.29)


as in Section 14.4, but with potential-energy function


(14.30)


where ris the distance from the origin at the centre of the box. The equation is


not separable in cartesian coordinates because of the functional form of Vat the


boundary of the box, but it becomes so when the equation is expressed in the plane


polar coordinates rand θ. In these coordinates, the two-dimensional Laplacian


operator is (see equation (9.38) and Example 9.18)


(14.31)


For the particle within the box, withV 1 = 10 , equation (14.29) is then


− (14.32)
























=





22

22

2

2

2


11


m


r


rr


r


E


ψψ ψ


ψ


θ


∇=
















2

2

22

2

2

11


r


rr


r θ


Vxy


rxya


()


,


,=


0 =+<


22

for (inside the box)


∞welsewhere







−∇ ,+ , ,= ,





2

2

2 m


ψψψ()()() ()xy Vxy xy E xy


*An ‘accidental’ degeneracy may also occur that is not an obvious consequence of symmetry. For example, the


states (7, 1) and (1, 7) are degenerate with the state (5, 5).


.......................................................................................................

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

. ................................................................... ....................................
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
..........................................................................................................


..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

. ............................................................................................... ........
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
..........................................................................................................


..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

. ........................ ........ .......................................................................
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
..........................................................................................................


..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

. ..................................................... ........... .......................................
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
..........................................................................................................


..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

. .................................................................................. .....................
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
..........................................................................................................


..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

............ .................. ..........................................................................
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...

+


+














+










+


+






+


++–


........................................................

...

..

...

...

..

...

...

..

...

...

..

...

...

..

...

...

..

...

.

..

..

...

........................................................

...

..

...

...

..

...

...

..

...

...

..

...

...

..

...

...

..

...

.

..

..

...

........................................................

........................................................

...

..

...

...

..

...

...

..

...

...

..

...

...

..

...

...

..

...

.

..

..

...

...

..

...

...

..

...

...

..

...

...

..

...

...

..

...

...

..

...

.

..

..

...

p=1


q=1


p=1


q=2


p=2


q=1


p=2


q=2


p=1


q=3


p=3


q=1


Figure 14.2

Free download pdf