404 Chapter 14Partial differential equations
The Θequation
(14.60)
The equation is transformed into the associated Legendre equation (13.22) by means
of the substitutionx 1 = 1 cos 1 θ. We have
Therefore,
and equation (14.60) becomes
(14.65)
and this is identical to the associated Legendre equation. The finite solutions in the
interval − 11 ≤ 1 x 1 ≤ 11 ( 01 ≤ 1 θ 1 ≤ 1 π) are the (normalized) associated Legendre functions
(equation (13.28))
(14.66)
These functions form an orthormal set, with property (equation (13.29))
(14.67)
Spherical harmonics
The products of the angular functionsΘ
l,m
andΦ
m
,
(14.68)
Y
llm
lm,,lm m
,= =
−!
() ()()
(||)
θθφφΘΦ
21
4 π ((||)
(cos )
||
lm
Pe
l
mim
+!
θ
φ
Z
0
2 π
ΘΘ
lm l m ll
d
, ′ ,′
(cos ) (cos ) sin =
,
θθθθδ
Θ
lm l
m
llm
lm
P
,
=
+−!
+!
(cos )
()(||)
(||)
(cos
||
θ
21
2
θθ)
,, ,,
,, ,,
,
=
=±± ±
l
ml
0123
012
...
...
() ()
()
121
1
2
2
2
2
2
−−++−
−
x
d
dx
x
d
dx
ll
m
x
ΘΘ
ΘΘ= 0
1
2
2
sin
sin
cos
θθ sin
θ
θ
θ
θ
θθ
d
d
d
d
d
d
d
d
ΘΘ Θ
=+ =(()12
2
2
2
−−x
d
dx
x
d
dx
ΘΘ
d
d
d
dx
d
dx
x
d
dx
x
2
2
2
2
2
2
2
2
1
ΘΘΘ Θ
θ
=−cosθθ+sin = −( ) −
dd
dx
Θ
d
d
d
dx
dx
d
d
dx
ΘΘ Θ
θθ
==−sinθ
1
1
2
2
sin
sin ( )
sin
θθ
θ
θ
θ
d
d
d
d
ll
Θ m
++−
Θ= 0