The Chemistry Maths Book, Second Edition

(Grace) #1

404 Chapter 14Partial differential equations


The Θequation


(14.60)


The equation is transformed into the associated Legendre equation (13.22) by means


of the substitutionx 1 = 1 cos 1 θ. We have


Therefore,


and equation (14.60) becomes


(14.65)


and this is identical to the associated Legendre equation. The finite solutions in the


interval − 11 ≤ 1 x 1 ≤ 11 ( 01 ≤ 1 θ 1 ≤ 1 π) are the (normalized) associated Legendre functions


(equation (13.28))


(14.66)


These functions form an orthormal set, with property (equation (13.29))


(14.67)


Spherical harmonics


The products of the angular functionsΘ


l,m

andΦ


m

,


(14.68)
Y

llm


lm,,lm m

,= =












−!


() ()()


(||)


θθφφΘΦ


21


4 π ((||)


(cos )


||

lm


Pe


l

mim

+!


θ


φ

Z


0

2 π

ΘΘ


lm l m ll

d


, ′ ,′

(cos ) (cos ) sin =


,

θθθθδ


Θ


lm l

m

llm


lm


P


,

=


+−!


+!


(cos )


()(||)


(||)


(cos


||

θ


21


2


θθ)


,, ,,


,, ,,


,


=


=±± ±







l


ml


0123


012


...


...


() ()


()


121


1


2

2

2

2

2

−−++−











x


d


dx


x


d


dx


ll


m


x


ΘΘ


ΘΘ= 0


1


2

2

sin


sin


cos


θθ sin


θ


θ


θ


θ


θθ


d


d


d


d


d


d


d


d


ΘΘ Θ







=+ =(()12


2

2

2

−−x


d


dx


x


d


dx


ΘΘ


d


d


d


dx


d


dx


x


d


dx


x


2

2

2

2

2

2

2

2

1


ΘΘΘ Θ


θ


=−cosθθ+sin = −( ) −


dd


dx


Θ


d


d


d


dx


dx


d


d


dx


ΘΘ Θ


θθ


==−sinθ


1


1


2

2

sin


sin ( )


sin


θθ


θ


θ
θ

d


d


d


d


ll


Θ m








++−












Θ= 0

Free download pdf