16.3 Components of vectors 451
EXAMPLE 16.5The centre of mass of a system of Nmasses, m
1
with position
vectorr
1
(‘at positionr
1
’),m
2
atr
2
,=,m
N
atr
N
(Figure 16.13) is
(16.12)
where is the total mass.
The cartesian components of a position vector r
of a point are the cartesian coordinates of the point;
r 1 = 1 (x, 1 y, 1 z). The vector equation (16.12) therefore
corresponds to three ordinary (scalar) equations, one
for each coordinate ofR 1 = 1 (X, Y, Z):
(16.13)
(see equation (5.40) for the one-dimensional case).
0 Exercise 11
EXAMPLE 16.6Dipole moments
The system of two charges shown in Figure 16.14,
with−qatr
1
andqatr
2
, defines an electric dipole
with vector dipole moment
μ 1 = 1 −qr
1
1 + 1 qr
2
1 = 1 q(r
2
1 − 1 r
1
) 1 = 1 qr (16.14)
More generally, a system of Ncharges,q
1
atr
1
,q
2
at
r
2
,=,q
N
atr
N
has dipole moment with respect to the
originO as point of reference,
(16.15)
This quantity depends on the position of the reference point if the total charge
is not zero. Thus, the position of chargeq
i
with respect to some point Ris
r
i
1 − 1 R, and the dipole moment of the system of charges with respect to Ris
(16.16)
andμ(R) 1 = 1 μ( 0 )only ifQ 1 = 10.
μμ()RrRr( )
i
ii
i
ii
i
=−=
−
===
∑∑∑
111
NNN
qqq
ii
RR
=−μμ() 0 Q
Qq=
∑
i
μμ=+++ =
=
∑
()qq q q
NN
N
11 2 2
1
rr r r
i
ii
X
M
mx Y
M
my Z
M
== =mz
== =
∑∑∑
111
i 111
ii
i
ii
i
ii
NNN
Mm
N
=
=
∑
i
i
1
Rrr r r
i
ii
=+++=
=
∑
11
11 2 2
1
M
mm m
M
m
NN
N
()
.
....
...
...
....
....
...
....
...
....
...
....
...
....
...
....
....
...
...
....
....
.
r
1
r
2
r
N
m
1
m
2
m
N
o
.
.
.
.....
......
......
......
......
......
......
......
.......
.....
......
.......
.....
......
.......
.....
.......
......
.....
.......
......
.....
.......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
....
.....
.....
.....
.....
.....
.....
.....
......
.
..
.........
.........
.........
........
.......
.........
............
...........
...........
............
...........
..........
............
...........
...........
............
...........
...........
............
..........
...........
............
...........
...........
............
...........
..........
............
...........
...........
............
...........
...........
............
..........
...........
............
...........
...........
.....
.......
......
.......
.......
......
.......
..
...............
.............................
....
.................
...................
.................
.................
...................
.................
.................
....................
.................
.................
...................
.................
.................
...................
.................
.................
............................
................................
.......
........
........
.........
........
....
Figure 16.13
........
............................................
.......................................
......................................
............................................
.......................................
.......................................
..............................................
..........
..........
...........
...
....
...................
...................
..
........
.......................................
.......................................
...........................................
.......................................
.....
..
..........
.........
........
..........
.........
........
..........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..........
........
.........
..........
........
.........
..........
........
.........
..........
........
.........
..
......
.....
.......
......
......
......
......
.
.
........................
...................
..........
........
.........
..........
........
.........
..........
........
.........
..........
........
.........
..........
........
.........
...
......
......
.......
.....
......
.......
.....
......
.......
.....
......
.......
......
.....
.......
......
.....
.......
......
......
.....
.........
........
..........
........
......
..
.....
.....
......
....
.....
......
.....
.....
.
.....
......
......
......
......
......
......
......
......
......
......
......
......
......
−q
q
r
2
r
1
r
o
Figure 16.14