The Chemistry Maths Book, Second Edition

(Grace) #1

16.5 The scalar (dot) product 457


Proof


To show the equivalence of the definitions (16.30) and (16.31), we apply the cosine


rule to the triangle in Figure 16.19:


(AB)


2

1 = 1 (OA)


2

1 + 1 (OB)


2

1 − 1 2(OA)(OB) 1 cos 1 θ 1 = 1 a


2

1 + 1 b


2

1 − 12 ab 1 cos 1 θ


The vector isb 1 − 1 a, and its length is given by


(AB)


2

1 = 1 (b


x

1 − 1 a


x

)


2

1 + 1 (b


y

1 − 1 a


y

)


2

1 + 1 (b


z

1 − 1 a


z

)


2

= 1 (a


x

2

1 + 1 a


y

2

1 + 1 a


z

2

) 1 + 1 (b


x

2

1 + 1 b


y

2

1 + 1 b


z

2

) 1 − 1 2(a


x

b


x

1 + 1 a


y

b


y

1 + 1 a


z

b


z

)


= 1 a


2

1 + 1 b


2

1 − 1 2(a


x

b


x

1 + 1 a


y

b


y

1 + 1 a


z

b


z

)


Thereforeab 1 cos 1 θ 1 = 1 a


x

b


x

1 + 1 a


y

b


y

1 + 1 a


z

b


z

.


EXAMPLE 16.11Givena 1 = 1 (3, 1, −1)andb 1 = 1 (1, 2, −3)finda 1
·


1 b,b 1
·

1 aand the


angle between the vectors.


By equation (16.31),


a 1


·


1 b 1 = 131 × 111 + 111 × 121 + 1 (−1) 1 × 1 (−3) 1 = 1 8, b 1


·


1 a 1 = 111 × 131 + 121 × 111 + 1 (−3) 1 × 1 (−1) 1 = 18


This example demonstrates that scalar multiplication is commutative,


a 1


·


1 b 1 = 1 b 1


·


1 a (16.32)


By equation (16.30), and the lengths of the vectors area 1 = 1 |a| 1 =
1


andb 1 = 1 |b| 1 =
1


. Therefore


0 Exercises 19–21


The sign of the scalar product is the sign of the cosine, so that the scalar product can


be positive, zero, or negative:


cosθθ=,=cos







≈. ≈



8


154


8


154


0 8702


1

49.86°°


14


cosθ= , 11


ab 11
·

ab


AB


.

...

..

...

...

..

...

...

b


a


θ


............................................................................................................................................................................................................................................................................

.............

..............

......

...

...............

.............

.............

..

..........

.........

........

..........

.........

........

..........

.........

........

..........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

..........

........

.........

..........

........

.........

..........

........

.........

..........

........

.........

..............

.....

......

.......

......

......

......

..

.....................

.......................

θ<


π


2


,a


.
b> 0

.

...

..

...

...

..

...

...

....

...

.....

......

.........

b


a


θ


............................................................................................................................................................................................................................................................................

.............

..............

......

...

...............

.............

.............

.

......

.....

....

......

.....

....

......

.....

....

......

.....

....

......

.....

....

......

.....

....

......

.....

....

......

.....

....

......

.....

....

......

.....

....

......

.....

....

..........

.....

.....

......

.....

......

.....

......

.

.....

.....

.....

......

.....

......

.....

......

.

θ=


π


2


,a


.
b=0

.

...

..

...

...

..

...

...

....

...

.....

......

...................
......
....

b


a


θ


............................................................................................................................................................................................................................................................................

.............

..............

......

...

...............

.............

.............

..

......

......

......

.......

......

......

.......

......

......

.......

......

......

.......

......

......

......

......

......

.......

......

......

.......

......

......

.......

......

......

.......

......

......

......

......

......

..............

..........

.........

..........

.......

.....

.....

.....

.....

.....

.....

......

.....

...

θ>


π


2


,a


.
b< 0

Figure 16.20

Free download pdf