The Chemistry Maths Book, Second Edition

(Grace) #1

36 Chapter 2Algebraic functions


Therefore


x


4

1 − 15 x


2

1 + 141 = 1 (x


2

1 − 1 1)(x


2

1 − 1 4)


Both the quadratic factors have the formx


2

1 − 1 a


2

1 = 1 (x 1 + 1 a)(x 1 − 1 a)discussed in


case (iii) above:


x


2

1 − 111 = 1 (x 1 + 1 1)(x 1 − 1 1) and x


2

1 − 141 = 1 (x 1 + 1 2)(x 1 − 1 2)


Therefore,


x


4

1 − 15 x


2

1 + 141 = 1 (x 1 + 1 1)(x 1 − 1 1)(x 1 + 1 2)(x 1 − 1 2)


0 Exercises 9–16


The expansion


(x 1 + 1 a)(x 1 + 1 b) 1 = 1 x


2

1 + 1 (a 1 + 1 b)x 1 + 1 ab (2.4)


used in Examples 2.6, has geometric interpretation as the area of a rectangle of sides


(x 1 + 1 a)and(x 1 + 1 b), as illustrated in Figure 2.3.


3

Other important general forms are


(a 1 + 1 b)


2

1 = 1 a


2

1 + 12 ab 1 + 1 b


2

square of side (a 1 + 1 b)


(a 1 − 1 b)


2

1 = 1 a


2

1 − 12 ab 1 + 1 b


2

square of side |a 1 − 1 b| (2.5)


(a 1 + 1 b)(a 1 − 1 b) 1 = 1 a


2

1 − 1 b


2

difference of squares


The first two equations of (2.5) can be combined by using the symbol ±, meaning ‘plus


or minus’:


(a 1 ± 1 b)


2

1 = 1 a


2

1 ± 12 ab 1 + 1 b


2

(2.6)


in which either the upper symbol is used on bothsides of the equation or the lower


symbol is used on both sides. Sometimes the symbol 3 is used in a similar way; for


example,a 131 b 1 = 1 ±crepresents the pair of equationsa 1 − 1 b 1 = 1 +canda 1 + 1 b 1 = 1 −c.


Factorization can be used to simplify algebraic fractions. For example, in


xy x


xxy










2


46


2

3

Euclid, ‘The Elements’, Book II, Propositions 4 and 7 are the geometric equivalents of the first two equations


(2.5) for the squares of (a 1 + 1 b) and (a 1 − 1 b).


............................................................................................................................................................................................................................................................................................................................................................................

...........

.........

..........

...........

.........

...........

..........

.........

...........

..........

.........

...........

..........

.........

...........

..........

.........

........ ............................................................................................................................................................................................................................................................................................. ............................... ..........................................................
.........
...........
..........
.........
...........
..........
.........
...........
..........
.........
...........
..........
.........
...........
..........
.........
...........
..

..

...........

.........

..........

...........

..........

.........

...........

..........

.........

...........

..........

.........

...........

..........

...........

.........

..........

...........

.........

..........

...........

.........

..........

..........

...........

.........

..........

...........

.........

...........

..........

.........

...........

..........

.........

............................................................................................................................................................................................................................................................................................................................................................................................
.........
...........
..........
.........
...........
..........
.........
...........
..........
..........
..........
..........
..........
..........
..........
..........
...........
.........
..........
...........
.........
..........
...........
.........
..........
...........
.........
..........
...........
..........
.........
...........
..........
.........
...........
..........................................................................................................................................................................................................................................................................................
.........
...........
..........
.........
...........
..........
.........
...........
..........
.........
...........
..........
.........
...........
..........
.........
...........
................................................................................................................................................................................................................... .................................................................

..........

.........

...........

..........

.........

...........

..........

.........

...........

..........

.........

...........

..........

.........

...........

..........

.........

............

..........

.........

...........

..........

..........

..........

..........

..........

..........

..........

..........

...........

.........

..........

...........

.........

..........

...........

.........

..........

...........

.........

..........

...........

..........

.........

..........

...........

.........

...........

..........

.........

...........

..........

.........

.................................................................................................................................................................................................................. ......................................................................

bxab


x


2

ax


b


x


xa


Figure 2.3

Free download pdf