The Chemistry Maths Book, Second Edition

(Grace) #1

460 Chapter 16Vectors


The general case


If the force is notconstant along the path r


1

to r


2

then


the work has the form of a line integral (Section 9.8).


Consider a body moving from point A at r


1

to point


B at r


2

along the curve C under the influence of a


force Fwhose value varies from point to point on C


(Figure 16.22). Let F(r) be the force at point ron the


curve. The work done on the body between positions r


andr 1 + 1 ∆ris∆W 1 ≈ 1 F(r) 1


·


1 ∆rand, in the limit|∆r| 1 → 10


on the curve, the element of work isdW 1 = 1 F(r) 1
·

1 dr. The


total work done from A to B on C is then


(16.38)


and the integral is a line integral. In terms of components, F 1 = 1 (F


x

, F


y

, F


z

)and


dr 1 = 1 (dx, dy, dz),F 1
·

1 dr 1 = 1 F


x

dx 1 + 1 F


y

dy 1 + 1 F


z

dz, and


(16.39)


This is a generalization of equation (9.48) for a curve in three dimensions, and the


discussion of Section 9.8 applies with only minor changes. In particular, if the force is


a conservative force then, by a generalization of the discussion of conservative forces


in Sections 5.7 and 9.8, the components of the force can be expressed as (partial)


derivatives of a potential-energy function V(see equation (5.57)),


(16.40)


Then


(16.41)


and dVis the total differential of the potential-energy functionV(r) 1 = 1 V(x,y,z). It


follows that, for a conservative force, the line integral (16.38) is independent of the


path, and is equal to the difference in potential energy between A and B:


(16.42)


0 Exercise 29


WdVVV


AB

A

B

AB

=−Z = −


Fdx Fdy Fdz


V


x


dx


V


y


dy


V


z


dz


xyz

++=−






















=−−dV


F


V


x


F


V


y


F


V


z


xyz

=−




=−




=−




W F dx F dy F dz


AB xyz

C

=++








Z


Wd


AB

C

=Z Fr r() 11


·


...
...
....
...
....
...
....
...
....
...
....
....
...
...
....
....
...
..

a


o







.....
..
..
...
...
..
..

....
....
...
.....
.

C






z


y


x


b


r


r+∆ r


∆ r


..

..

..

..

.

..

..

..

..

..

...

..

..

..

...

..

...

..

...

...

...

...

...

...

....

...

.....

....

....

......

......

.......

..........

................

.................
.................
...........
.......
.......
......
.....
.....
......
....
....
.....
....
...
....
....
...
....
...
....
...
...
...
....
..
...
....
..
...
...
...
..
...
...
..

..

.....

.....

.....

......

.....

.....

......

.....

.....

.....

.....

.....

......

.....

.....

......

.....

.....

.....

.....

.....

......

.....

.....

.....

.....

.....

......

.....

.....

......

.....

.....

.....

.....

......

....

......

.....

.....

.....

.....

...

......

.......

......

......

.....

...

......

.....

.....

......

.....

.....

.....

.....

.....

......

.....

.....

.....

.....

.....

......

.....

.....

......

.....

.....

.....

.....

..

...

........

........

.......

.........

.......

........

........

........

.......

.........

.......

........

........

........

.......

.........

.......

........

........

........

.......

.........

.......

........

........

...

.......

.....

......

......

.....

...

...

..................

............

.......

.......

.........

.......

........

........

........

.......

.........

.......

........

........

.......

........

........

........

.......

...

...

...........

............

...........

..........

............

...........

...........

............

...........

..........

..

................................

.

......

......

........

......

......

............

...........

...........

............

...........

..........

..........

Figure 16.22

Free download pdf