460 Chapter 16Vectors
The general case
If the force is notconstant along the path r
1
to r
2
then
the work has the form of a line integral (Section 9.8).
Consider a body moving from point A at r
1
to point
B at r
2
along the curve C under the influence of a
force Fwhose value varies from point to point on C
(Figure 16.22). Let F(r) be the force at point ron the
curve. The work done on the body between positions r
andr 1 + 1 ∆ris∆W 1 ≈ 1 F(r) 1
·
1 ∆rand, in the limit|∆r| 1 → 10
on the curve, the element of work isdW 1 = 1 F(r) 1
·
1 dr. The
total work done from A to B on C is then
(16.38)
and the integral is a line integral. In terms of components, F 1 = 1 (F
x
, F
y
, F
z
)and
dr 1 = 1 (dx, dy, dz),F 1
·
1 dr 1 = 1 F
x
dx 1 + 1 F
y
dy 1 + 1 F
z
dz, and
(16.39)
This is a generalization of equation (9.48) for a curve in three dimensions, and the
discussion of Section 9.8 applies with only minor changes. In particular, if the force is
a conservative force then, by a generalization of the discussion of conservative forces
in Sections 5.7 and 9.8, the components of the force can be expressed as (partial)
derivatives of a potential-energy function V(see equation (5.57)),
(16.40)
Then
(16.41)
and dVis the total differential of the potential-energy functionV(r) 1 = 1 V(x,y,z). It
follows that, for a conservative force, the line integral (16.38) is independent of the
path, and is equal to the difference in potential energy between A and B:
(16.42)
0 Exercise 29
WdVVV
AB
A
B
AB
=−Z = −
Fdx Fdy Fdz
V
x
dx
V
y
dy
V
z
dz
xyz
++=−
∂
∂
∂
∂
∂
∂
=−−dV
F
V
x
F
V
y
F
V
z
xyz
=−
∂
∂
=−
∂
∂
=−
∂
∂
W F dx F dy F dz
AB xyz
C
=++
Z
Wd
AB
C
=Z Fr r() 11
·
...
...
....
...
....
...
....
...
....
...
....
....
...
...
....
....
...
..
a
o
•
.....
..
..
...
...
..
..
....
....
...
.....
.
C
z
y
x
b
r
r+∆ r
∆ r
..
..
..
..
.
..
..
..
..
..
...
..
..
..
...
..
...
..
...
...
...
...
...
...
....
...
.....
....
....
......
......
.......
..........
................
.................
.................
...........
.......
.......
......
.....
.....
......
....
....
.....
....
...
....
....
...
....
...
....
...
...
...
....
..
...
....
..
...
...
...
..
...
...
..
..
.....
.....
.....
......
.....
.....
......
.....
.....
.....
.....
.....
......
.....
.....
......
.....
.....
.....
.....
.....
......
.....
.....
.....
.....
.....
......
.....
.....
......
.....
.....
.....
.....
......
....
......
.....
.....
.....
.....
...
......
.......
......
......
.....
...
......
.....
.....
......
.....
.....
.....
.....
.....
......
.....
.....
.....
.....
.....
......
.....
.....
......
.....
.....
.....
.....
..
...
........
........
.......
.........
.......
........
........
........
.......
.........
.......
........
........
........
.......
.........
.......
........
........
........
.......
.........
.......
........
........
...
.......
.....
......
......
.....
...
...
..................
............
.......
.......
.........
.......
........
........
........
.......
.........
.......
........
........
.......
........
........
........
.......
...
...
...........
............
...........
..........
............
...........
...........
............
...........
..........
..
................................
.
......
......
........
......
......
............
...........
...........
............
...........
..........
..........
Figure 16.22