17.7 Alternating functions 495
If two variables are equal the function is zero,
f(x
1, x
1, x
3, =, x
n) 1 = 10 (17.53)
A determinant is an alternating function of its rows (or columns). More importantly, a
determinant that is an alternating function of nvariables,x
1, x
2, x
3=, x
n, has the form
(17.54)
wheref
1,f
2, =,f
nare arbitrary functions. The interchange of any pair of variables
leads to the interchange of two columns and, therefore, to a change of sign.
Forn 1 = 12 ,
(17.55)
Forn 1 = 13 ,
(17.56)
The expansion of the determinant has n! products of the functionsf
1,f
2, =,f
n, each
with a distinct ordering of the nvariablesx
1, 1 x
2,1=, 1 x
n; these orderings are the n!
permutations of nobjects. Thus, in (17.56), the3! 1 = 16 permutations ofx
1,x
2, andx
3are
x
1x
2x
3, x
1x
3x
2, x
2x
3x
1, x
2x
1x
3, x
3x
1x
2, x
3x
2x
1(17.57)
Each term contributes to the sum with +sign if the permutation is obtained from
x
1x
2x
3by an evennumber of transpositions, and with – sign for an oddnumber of
transpositions.
0 Exercise 29
Alternating functions in the form of single determinants or sums of determinants
are important in quantum mechanics for the construction of electronic wave
=
−
fxfx fx fxfx fx
fx
112 2 33 1123321()()() ()()()
(
2 22331 122133132)()() ()()()
()
fxfx fxfxfx
fx f
−
- (()() ()()()xfx fxfxfx
132 132231−
fx fx fx
fx fx fx
fx f
11 12 1321 22 2331() () ()
() () ()
()
3 32 33() ()xfx
fx fx
fx fx
fxfx fx
11 1221 22112 2 12() ()
() ()
=−()() ())()fx
21fx fx fx fx
fx fx fx
11 12 13 1 n21 22 23() () () ()
() () ()
fx
fx fx fx fx
fx
nnn231 32 33 31()
() () () ()
() ffx fx fx
nn nn() () ()
23