The Chemistry Maths Book, Second Edition

(Grace) #1

42 Chapter 2Algebraic functions


and


(2.13)


defines the constant slope. The line crosses the horizontal x-axis at one point:


y 1 = 1 0 when (2.14)


This value of xis called the rootof the linear function. In general, the roots of a


polynomial function are those values of the variable for which the value of the function


is zero; that is, the roots are the solutions of the polynomial equation


f(x) 1 = 10 (2.15)


EXAMPLE 2.14Find the equation of the straight line that passes through the points


(− 1 , − 6 ) and (3, 2).


Let the line bey 1 = 1 mx 1 + 1 c. Then:


at point(x


1

,y


1

) 1 = 1 (−1, −6), − 61 = 1 −m 1 + 1 c


at point(x


2

, y


2

) 1 = 1 (3, 2), 21 = 13 m 1 + 1 c


Solution of the pair of simultaneous equations (see Section 2.8) givesm 1 = 12 and


c 1 = 1 − 4. Therefore


y 1 = 12 x 1 − 14


The graph of the line is shown in Figure 2.7. The line has slopem 1 = 12 , which means


that the value of yincreases twice as fast as that ofx. The line crosses the y-axis at


y 1 = 1 c 1 = 1 − 4 , and crosses the x-axis atx 1 = 12.


0 Exercises 40–43


x


c


m


=−


m


yy


xx


=




21

21

...................................................

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

..

− 1 0 12 3


x


y


− 2


− 4


2


4














(3,2)


(− 1 ,−6)


.....

..........

..........

..........

.

..
.

..

.

...

..

.

...

..

.......

.............

..............

.............

............

..............

.............

............

...............

............

.............

..............

............

.............

..............

............

.............

..............

.............

............

..............

.............

............

..............

.............

.............

..............

............

.............

..............

............

.............

..............

.............

............

..............

.............

............

..............

.............

.............

..............

............

.............

..............

............

.............

..............

.............

............

..............

.............

............

..............

.............

.............

..............

............

.............

..............

............

.............

..............

.............

............

..............

.............

............

..............

.............

............

...............

............

.............

..............

............

.............

..............

.............

............

..............

.............

............

..............

.............

............

...............

............

.............

..............

............

.............

..............

.............

............

..............

.............

............

..............

...........

Figure 2.7

Free download pdf