542 Chapter 19The matrix eigenvalue problem
The secular equations of the problem are
(1) (α 1 − 1 E)c
11 + 1 βc
21 + βc
4= 10
(2) βc
11 + 1 (α 1 − 1 E)c
2- 1 βc
3= 10
(3) βc
21 + 1 (α 1 − 1 E)c
31 + 1 βc
41 = 10
(4) βc
11 + 1 βc
31 + 1 (α 1 − 1 E)c
41 = 10
and the eigenvectors are obtained by solving this system of homogeneous equations
for each eigenvalue Ein turn. We consider first the nondegenerate eigenvalues
E
11 = 1 α 1 + 12 βandE
41 = 1 α 1 − 12 β.
ForE 1 = 1 E
11 = 1 α 1 + 12 β,
(1) − 2 βc
11 +βc
21 +βc
4= 10
(2) βc
11 − 12 βc
2- 1 βc
31 = 10
(3) βc
21 − 12 βc
31 +βc
4= 10
(4) βc
11 + 1 βc
31 − 12 βc
4= 10
Only three of the four equations are independent; for example,(1) 1 + 1 (2) 1 + 1 (3) 1 = 1 −(4).
Solving for c
2, c
3, and c
4in terms of c
1gives c
21 = 1 c
1, c
31 = 1 c
1, c
41 = 1 c
1. Similarly, the
eigenvector corresponding to eigenvalueE
41 = 1 α 1 − 12 βhas componentsc
21 = 1 −c
1, c
31 = 1 c
1,
c
41 = 1 −c
1. The eigenvectors corresponding to eigenvaluesE
1andE
4are therefore
wherec
1andc
4are arbitrary.
ForE
21 = 1 E
31 = 1 α, the secular equations are
(1) 1 = 1 (3) βc
21 + 1 βc
41 = 10
(2) 1 = 1 (4) βc
11 + 1 βc
31 = 10
Only two of the four equations are therefore independent, and have solutionc
31 = 1 −c
1,
c
41 = 1 −c
2. A pair of eigenvectors corresponding to the doubly-degenerate eigenvalue
E 1 = 1 αis therefore
CC
22 331
1
1
1
1
1
1
1
=
−
−
,=
−
−
cc
CC
11 4 41
1
1
1
1
1
1
1
=
,=
−
−
cc