The Chemistry Maths Book, Second Edition

(Grace) #1

2.6 Rational functions 51


(2.28) is defined for all values of xwith the exception of the roots of the polynomial


Q(x)in the denominator, for whichQ(x) 1 = 10.


The graph of the functiony 1 = 112 xin Figure 2.13 demonstrates some typical


properties of rational functions. As xapproaches zero from the right(x 1 > 1 0)the value


of 12 xbecomes arbitrarily large; we say thaty 1 = 112 xtends to


infinity as xtends to zero. Similarly, ytends to minus infinity


as xtends to zero from the negative side. The pointx 1 = 10


is called a point of singularity, and all rational functions


have at least one such point, one for each root ofQ(x). The


graph also shows that asx 1 → 1 ∞from either side, the curve


approaches the y-axis arbitrarily closely but does not cross


it. The y-axis is the linex 1 = 10 and is called an asymptote


to the curve; we say that the curve approaches the line


x 1 = 10 asymptotically. The liney 1 = 10 (the x-axis) is also an


asymptote.


Division of one polynomial by another


The function (2.28) is called a properrational function if the degree nof the


numeratorP(x) is smaller than the degreemof the denominatorQ(x), as in examples


(i) and (iv) of (2.29). Otherwise, as in examples (ii) and (iii), it is called improper.


In ordinary number theory, an improper fraction is one whose value is greater than


or equal to 1; for example 5 2 2or2 2 2. An improper fraction can always be reduced


to a combination of proper fractions by division. An improper rational function


is reduced to a combination of proper functions by algebraic division.


EXAMPLE 2.25Dividex


3

1 − 17 x


2

1 + 116 x 1 − 111 byx 1 − 11.


By adapting the method of ordinary long division, we write


It follows that


xx x


x


xx


x


32

2

71611


1


610


1


1


−+−



=−+−



xx


xx x


32

2

61611



−+−


subtract


into goes times


s


−−


−+


66


66


2

2

xx


xx uubtract


10 11 into goes times 10 10


10 1


xxx


x



− 00


1


subtract


− remainder


)


xx


xxx x x x x


2

32 3 2

610


1 7 16 11


−+


−−+− into goes tiimes


y


x


....

...........

...........

...........

.........

.........

...........

.........

........

..........

..........

.........

..........

...........

..........

............

..........

.........

...........

.........

..........

...........

..........

..........

...........

.........

...........

...........

..........

..........

............

...........

...........

.............

............

...............

...................

...................

........................

..............................................

..............................................................

.............................................................................................................................

......................................................

...

...........

..........

...........

..........

.........

..........

.........

.........

..........

.........

..........

..........

..........

...........

............

.........

..........

...........

.........

.........

............

..........

..........

..........

..........

..........

...........

..........

...........

...........

...........

...........

.............

.............

..............

...................

..................

.......................

...........................................

..........................................................

.................................................................................................................

.............................................................................

Figure 2.13

Free download pdf