2.6 Rational functions 51
(2.28) is defined for all values of xwith the exception of the roots of the polynomial
Q(x)in the denominator, for whichQ(x) 1 = 10.
The graph of the functiony 1 = 112 xin Figure 2.13 demonstrates some typical
properties of rational functions. As xapproaches zero from the right(x 1 > 1 0)the value
of 12 xbecomes arbitrarily large; we say thaty 1 = 112 xtends to
infinity as xtends to zero. Similarly, ytends to minus infinity
as xtends to zero from the negative side. The pointx 1 = 10
is called a point of singularity, and all rational functions
have at least one such point, one for each root ofQ(x). The
graph also shows that asx 1 → 1 ∞from either side, the curve
approaches the y-axis arbitrarily closely but does not cross
it. The y-axis is the linex 1 = 10 and is called an asymptote
to the curve; we say that the curve approaches the line
x 1 = 10 asymptotically. The liney 1 = 10 (the x-axis) is also an
asymptote.
Division of one polynomial by another
The function (2.28) is called a properrational function if the degree nof the
numeratorP(x) is smaller than the degreemof the denominatorQ(x), as in examples
(i) and (iv) of (2.29). Otherwise, as in examples (ii) and (iii), it is called improper.
In ordinary number theory, an improper fraction is one whose value is greater than
or equal to 1; for example 5 2 2or2 2 2. An improper fraction can always be reduced
to a combination of proper fractions by division. An improper rational function
is reduced to a combination of proper functions by algebraic division.
EXAMPLE 2.25Dividex
3
1 − 17 x
2
1 + 116 x 1 − 111 byx 1 − 11.
By adapting the method of ordinary long division, we write
It follows that
xx x
x
xx
x
32
2
71611
1
610
1
1
−+−
−
=−+−
−
xx
xx x
32
2
61611
−
−+−
subtract
into goes times
s
−−
−+
66
66
2
2
xx
xx uubtract
10 11 into goes times 10 10
10 1
xxx
x
−
− 00
1
subtract
− remainder
)
xx
xxx x x x x
2
32 3 2
610
1 7 16 11
−+
−−+− into goes tiimes
y
x
....
...........
...........
...........
.........
.........
...........
.........
........
..........
..........
.........
..........
...........
..........
............
..........
.........
...........
.........
..........
...........
..........
..........
...........
.........
...........
...........
..........
..........
............
...........
...........
.............
............
...............
...................
...................
........................
..............................................
..............................................................
.............................................................................................................................
......................................................
...
...........
..........
...........
..........
.........
..........
.........
.........
..........
.........
..........
..........
..........
...........
............
.........
..........
...........
.........
.........
............
..........
..........
..........
..........
..........
...........
..........
...........
...........
...........
...........
.............
.............
..............
...................
..................
.......................
...........................................
..........................................................
.................................................................................................................
.............................................................................
Figure 2.13