The Chemistry Maths Book, Second Edition

(Grace) #1

60 Chapter 2Algebraic functions


42.Explain howKandΛ


0

m

in Kohlrausch’s law (Exercise 33),


can be obtained graphically from the results of measurements ofΛ


m

over a range of


concentration c.


43.The Debye equation


relates the relative permittivity (dielectric constant) ε


r

of a pure substance to the


dipole moment μand polarizability αof the constituent molecules, where ρis the


density at temperature T, and M, N


A

, k, and ε


0

are constants. Explain how μand αcan


be obtained graphically from the results of measurements of ε


r

and ρover a range of


temperatures.


Find the roots and sketch the graphs of the quadratic functions:


44.x


2

1 − 13 x 1 + 12 45.− 2 x


2

1 − 13 x 1 + 12 46. 3 x


2

1 − 13 x 1 − 11 47.−x


2

1 + 16 x 1 − 19



  1. 4 x


2

1 + 14 x 1 + 11 49.x


2

1 + 1 x 1 + 12 50.− 3 x


2

1 + 13 x 1 − 11


51.If find xas a function of y.


52.The acidity constantK


a

of a weak acid at concentration cis


where αis the degree of ionization. Express αin terms ofK


a

and c(remember that α, K


a

,


and care positive quantities).


Given that x 1 − 11 is a factor of the cubic, (i) find the roots, (ii)sketch the graph:


53.x


3

1 + 14 x


2

1 + 1 x 1 − 16 54.x


3

1 − 16 x


2

1 + 19 x 1 − 14 55.x


3

1 − 13 x


2

1 + 13 x 1 − 11



  1. Given thatx


2

1 − 11 is a factor of the quarticx


4

1 − 15 x


3

1 + 15 x


2

1 + 15 x 1 − 16 , (i)find the roots,


(ii)sketch the graph.


Section 2.6


Use algebraic division to reduce the rational function to proper form:
















Section 2.7


Express in terms of partial fractions:




















xx


xx


2

2

21


12


+−


()( )−+


257


12


2

xx


xx x


−+


()( )−+


x


xx



++


2


32


2

x


xx










2


() 3


1


( )( ) 12
xx−+

23456


22


432

2

xxxx


xx


−+ −+


−−


xxx


x


32

256


1


+−−






32 4


2


32

xxx


x


−−+






21


3


x


x







K


c


a

=



α


α


2

1


y


xx


xx


=


++


+−


21


21


2

2

ε


ε


ρ


ε


α


μ


r

r

M


N


kT







=+










1


23 3


0

2

A

ΛΛ


mm

=−


0

K c

Free download pdf