The Chemistry Maths Book, Second Edition

(Grace) #1

72 Chapter 3Transcendental functions


This is one of the simplest second-order differential equations (Chapter 12) and a


solution is


x(t) 1 = 1 A 1 cos 1 ωt


where A, the amplitude, is the maximum displacement from equilibrium and


is called the angular frequency. The displacementx(t)is periodic with


respect to time, with period


where is the frequency of vibration. A plot of displacement against time


is very similar to that in Figure 3.12 (see Figure 12.3).


3.3 Inverse trigonometric functions


Ify 1 = 1 sin 1 xthen xis the angle whose sine is y, and is given by the inverse sine function


sin


− 1

y:


ify 1 = 1 sin 1 x thenx 1 = 1 sin


− 1

y (3.15)


Because of the possible confusion between the notation for the inverse sine,


sin


− 1

y, and the inverse of the sine, (sin 1 y)


− 1

, an alternative notation for the inverse


trigonometric functions is often used:


arcsin 1 y 1 = 1 sin


− 1

y, arccos 1 y 1 = 1 cos


− 1

y, arctan 1 y 1 = 1 tan


− 1

y (3.16)


The inverse functions are multi-valued functions; for example, as indicated in


Figure 3.13, many angles have the same sine:


sin x 1 = 1 sin 1 (π 1 − 1 x) 1 = 1 sin 1 (x 1 ± 12 nπ) (3.17)


ν=


1


2 π


k


m


τ


ων


==


21 π


ω= km


+1


− 1


o


x


y


•• • y=sinx


xπ−x 2 π+x


................................................................................................................................................................................................................

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

..

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

..

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

..

...

......

......

.....

.....

......

......

.....

......

.....

......

......

.....

.....

......

......

.....

......

......

......

.....

......

......

......

......

......

......

......

......

......

.......

.......

.......

.......

..........

...........

..........................

...........

..........

.......

.......

.......

.......

......

.......

.....

......

.......

.....

......

......

......

.....

......

......

.....

......

......

.....

......

......

.....

......

.....

......

......

.....

.....

......

.....

......

......

.....

.....

......

......

.....

......

.....

.....

......

......

......

.....

.....

.......

.....

.....

......

......

.....

......

......

.....

.......

.....

......

......

......

......

.......

......

......

.......

.......

.......

..........

...........

.............................

...........

.........

.......

.......

.......

.......

......

......

......

......

......

......

......

......

......

.....

......

......

.....

......

......

.....

......

.....

......

......

.....

.....

......

......

.....

......

.....

......

.....

......

.....

......

.....

......

......

.....

.....

......

......

.....

......

.....

......

......

.....

......

......

.....

......

......

.....

.......

.....

......

......

......

......

.......

......

......

.......

.......

........

.........

...........

.............

Figure 3.13

Free download pdf