The Chemistry Maths Book, Second Edition

(Grace) #1

74 Chapter 3Transcendental functions


so thath 1 = 1 csin A 1 = 1 asin C. Then


Similarly for the third angle and side.


For the cosine rule, from Figure 3.15 and Pythagoras’ theorem,


a


2

1 = 1 h


2

1 + 1 (b 1 − 1 x)


2

1 = 1 h


2

1 + 1 b


2

1 + 1 x


2

1 − 12 bx, c


2

1 = 1 h


2

1 + 1 x


2

and the rule follows sincex 1 = 1 c 1 cos 1 A.


EXAMPLE 3.10Given the lengthsa 1 = 1 2, c 1 = 13 , and the angleB 1 = 1 π 23 of the triangle


in Figure 3.14, find the third side and the other angles.


Given two sides and the included angle, we use the cosine rule to find b:


b


2

1 = 1 a


2

1 + 1 c


2

1 − 12 accos 1 B 1 = 141 + 191 − 1 12 cos 1 π 23


andcos 1 π 231 = 1122. Thereforeb


2

1 = 141 + 191 − 161 = 17 and


To find the other two angles we use the cosine rule for one; for example,


a


2

1 = 1 b


2

1 + 1 c


2

1 − 12 bccos 1 A


so that


cos 1 A 1 = 1 (b


2

1 + 1 c


2

1 − 1 a


2

) 22 bc 1


Then C 1 ≈ 1 180° 1 − 1 60° 1 − 1 40.89° 1 = 1 79.11°.


0 Exercises 14–17


Compound-angle identities


The sines and cosines of the sum and difference of two angles are


sin(x 1 + 1 y) 1 = 1 sin 1 x 1 cos 1 y 1 + 1 cos 1 x 1 sin 1 y


sin(x 1 − 1 y) 1 = 1 sin 1 x 1 cos 1 y 1 − 1 cos 1 x 1 sin 1 y


(3.21)


cos(x 1 + 1 y) 1 = 1 cos 1 x 1 cos 1 y 1 − 1 sin 1 x 1 sin 1 y


cos(x 1 − 1 y) 1 = 1 cos 1 x 1 cos 1 y 1 + 1 sin 1 x 1 sin 1 y


(3.22)


==







≈



27


2


7


40 89


1

and A cos. °


b= 7.


sin sin AC


ac


=

Free download pdf