74 Chapter 3Transcendental functions
so thath 1 = 1 csin A 1 = 1 asin C. Then
Similarly for the third angle and side.
For the cosine rule, from Figure 3.15 and Pythagoras’ theorem,
a
2
1 = 1 h
2
1 + 1 (b 1 − 1 x)
2
1 = 1 h
2
1 + 1 b
2
1 + 1 x
2
1 − 12 bx, c
2
1 = 1 h
2
1 + 1 x
2
and the rule follows sincex 1 = 1 c 1 cos 1 A.
EXAMPLE 3.10Given the lengthsa 1 = 1 2, c 1 = 13 , and the angleB 1 = 1 π 23 of the triangle
in Figure 3.14, find the third side and the other angles.
Given two sides and the included angle, we use the cosine rule to find b:
b
2
1 = 1 a
2
1 + 1 c
2
1 − 12 accos 1 B 1 = 141 + 191 − 1 12 cos 1 π 23
andcos 1 π 231 = 1122. Thereforeb
2
1 = 141 + 191 − 161 = 17 and
To find the other two angles we use the cosine rule for one; for example,
a
2
1 = 1 b
2
1 + 1 c
2
1 − 12 bccos 1 A
so that
cos 1 A 1 = 1 (b
2
1 + 1 c
2
1 − 1 a
2
) 22 bc 1
Then C 1 ≈ 1 180° 1 − 1 60° 1 − 1 40.89° 1 = 1 79.11°.
0 Exercises 14–17
Compound-angle identities
The sines and cosines of the sum and difference of two angles are
sin(x 1 + 1 y) 1 = 1 sin 1 x 1 cos 1 y 1 + 1 cos 1 x 1 sin 1 y
sin(x 1 − 1 y) 1 = 1 sin 1 x 1 cos 1 y 1 − 1 cos 1 x 1 sin 1 y
(3.21)
cos(x 1 + 1 y) 1 = 1 cos 1 x 1 cos 1 y 1 − 1 sin 1 x 1 sin 1 y
cos(x 1 − 1 y) 1 = 1 cos 1 x 1 cos 1 y 1 + 1 sin 1 x 1 sin 1 y
(3.22)
==
≈
−
27
2
7
40 89
1
and A cos. °
b= 7.
sin sin AC
ac
=