3.6 The exponential function 81
The terms are decreasing rapidly in magnitude, and the first five are sufficient
(compare Example 1.10):
exp(−0.02) 1 ≈ 1 0.980 1198167
0 Exercises 33, 34
The graphs of e
x
and its reciprocal e
−x
are shown in Figure 3.18. The graphs of all the
exponential functions a
x
are very similar, with properties (for alla 1 > 10 )
a
0
1 = 1 1, a
x
1 → 1 ∞asx 1 → 1 ∞, a
x
1 → 1 0asx 1 → 1 −∞ (3.32)
It will be seen in Chapter 4 that the unique property of e
x
is that the slope of its graph
at any point is equal to the value of the function at that point:
(3.33)
The exponential function occurs in nearly all branches of applied mathematics,
including statistics, kinetics, electromagnetic theory, quantum mechanics, and statis-
tical mechanics.
0 Exercises 35
EXAMPLE 3.20Exponential growth and decay
Exponential growth arises when the rate of growth of a system at any time is
proportional to the size of the system at that time. Ifx(t)is the size at time tthen
(see Chapter 4) the rate of change of xis
dx
dt
=±kx t()
de
dx
e
x
x
=
e
x
e
−x
o
1
.......................
.......................................................
...........................................
......................................
.............................
........................
.........................
....................
.................
...................
...............
..............
...............
............
............
............
...........
..........
...........
..........
.........
..........
.........
........
.........
........
........
.........
.......
........
........
.......
.......
........
.......
......
........
......
.......
.......
......
.......
.......
......
......
.......
......
......
......
......
......
.......
.....
......
.......
.....
......
......
......
......
......
.....
......
......
.....
......
......
.....
......
......
.....
......
......
.....
.....
......
......
.....
......
.....
.....
......
......
.....
......
..
.......................
.......................................................
...........................................
......................................
.............................
........................
.........................
....................
.................
...................
...............
..............
...............
............
............
............
...........
..........
...........
..........
.........
..........
.........
........
.........
........
........
.........
.......
.........
.......
.......
........
.......
.......
.......
.......
......
........
......
......
.......
.......
......
.......
......
......
......
......
......
.......
......
.....
.......
......
.....
.......
.....
......
......
......
.....
......
......
.....
.......
.....
.....
.......
.....
.....
......
......
.....
......
.....
......
......
.....
.....
......
.....
......
.....
......
..
Figure 3.18