CHAPTER 9. INTEGRAL CALCULUS
() () ()ìIî â
ì
ò
ìIî à
ì
ó
ìIî á
ì
ñ
ì
ê r r r
r
⋅
∂
∂
⋅ +
∂
∂
⋅ +
∂
∂
=
∂
∂
I==
() () ()ìIî â
î
ò
ìIî à
î
ó
ìIî á
î
ñ
î
ê r r r
r
⋅
∂
∂
⋅ +
∂
∂
⋅ +
∂
∂
=
∂
∂
K==
=
- fÑ==íÜÉ==ëìêÑ~ÅÉ==p==áë==ÖáîÉå=Äó=íÜÉ=Éèì~íáçå=ò=ò(ñIó)I=ïÜÉêÉ=
ò()ñIó ==áë==~==ÇáÑÑÉêÉåíá~ÄäÉ==ÑìåÅíáçå==áå==íÜÉ=Ççã~áå=a()ñIóI=
íÜÉå==
- fÑ=p=áë=çêáÉåíÉÇ=ìéï~êÇI=áKÉK=íÜÉ=â-íÜ=ÅçãéçåÉåí=çÑ=íÜÉ=
åçêã~ä=îÉÅíçê=áë=éçëáíáîÉI=íÜÉå===
=====∫∫ ()⋅ =∫∫ ( )⋅
p p
cñIóIò Çp cñIóIò åÇp
r r r r
=
====== ()
()
∫∫
+
∂
∂
−
∂
∂
= ⋅ −
añIó
à â ÇñÇó
ó
ò
á
ñ
ò
cñIóIò
r r r r
I==
=
- fÑ=p=áë=çêáÉåíÉÇ=Ççïåï~êÇI=áKÉK=íÜÉ=â-íÜ=ÅçãéçåÉåí=çÑ=íÜÉ=
åçêã~ä=îÉÅíçê=áë=åÉÖ~íáîÉI=íÜÉå===
=====∫∫ ()⋅ =∫∫ ( )⋅
p p
cñIóIò Çp cñIóIò åÇp
r r r r
====== ()
()
∫∫
−
∂
∂
+
∂
∂
= ⋅
añIó
à â ÇñÇó
ó
ò
á
ñ
ò
cñIóIò
r r r r
K==
=
1144. ∫∫()⋅ =∫∫ + +
p p
c åÇp mÇóÇò nÇòÇñ oÇñÇó
r r
=
=∫∫()α+ β+ γ
p
mI==Åçë nÅçë oÅçë Çp
ïÜÉêÉ=mI=()ñIóIò nI=(ñIóIò) o(ñIóIò)=~êÉ=íÜÉ=ÅçãéçåÉåíë=çÑ=
íÜÉ=îÉÅíçê= ÑáÉäÇ= c
r
K==
ÅçëαI= Åçë I=β Åçë ==~êÉ=íÜÉ=γ ~åÖäÉë= ÄÉíïÉÉå=íÜÉ=çìíÉê=ìåáí=
åçêã~ä=îÉÅíçê= å
r
=~åÇ=íÜÉ=ñ-~ñáëI=ó-~ñáëI=~åÇ=ò-~ñáëI=êÉëéÉÅí-
áîÉäóK=
=