Draft
10.6Examples 181
- ComputethefactoredloadmomentMu. Fora simplysupportedbeamcarrying
uniformlydistributedload,
Mu=wuL
2
=8 = (1:52)(20)
2
=8 = 76k.ft
Assumingcompactsection,sincea vastmajority of rolledsectionssatisfypfor
boththe
angeandtheweb. ThedesignstrengthbMnis
bMn=bMp=bZxFy
Thedesignrequirement is
bMn=Mu
or,combingthosetwo equationswe have:
bZxFy=Mu
- RequiredZxis
Zx=
Mu
bFy
=
76(12)
0 :90(36)
= 28 : 1 in
3
FromthenotesonStructuralMaterials,we selecta W12X22sectionwhich hasa
Zx= 29: 3 in
3
NotethatZxis approximatedby
wd
9
=
(22)(12)
9
= 29:3.
- Check compactsectionlimitspforthe
angesfromthetable
=
bf
2 tf
= 4 : 7
p =
65
p
Fy
=
65
p
36
= 10: 8 >
p
andfortheweb:
=
hc
tw
= 41 : 8
p =
640
p
Fy
=
640
p
36
= 107
p
- Check theStrengthby correctingthefactoredmomentMuto includetheselfweight.
Selfweight of thebeamW12X22is 22 lb./ft.or 0.022kip/ft
wD = 0 :2 + 0: 022 = 0: 222 k/ft
wu = 1 :2(0:222)+ 1:6(0:8) = 1: 55 k/ft
Mu = (1:55)(20)
2
=8 = 77: 3 k.ft
Mn = Mp=ZxFy=
(29:3)in
3
(36)ksi
(12)in/ft
= 87: 9 k.ft
bMn = 0 :90(87:9) = 79: 1 k.ft> Mu
p
Thereforeuse W12X22 section.
- We nallycheck forthemaximumdistancebetweensupports.
ry =
s
Iy
A
=
r
5
6 : 5
= 0: 88 in (10.16-a)
Lp =
300
p
Fy
ry (10.16-b)
=
300
p
36
0 :88 = 43 ft (10.16-c)