2 Quadratic Fields 143
it follows that
x+y= 9 a^3 ,
x^2 −xy+y^2 = 3 b^3 ,
wherea,b∈Zand 3b.
We now shift operations to the Euclidean domainEof Eisenstein integers. We have
x^2 −xy+y^2 =(x+yρ)(x+yρ^2 ),
whereρ=(i
√
3 − 1 )/2 is a cube root of unity. Putλ= 1 −ρ,sothat( 1 +ρ)λ^2 =3.
Thenλis a common divisor ofx+yρandx+yρ^2 ,since
x+yρ=x+y−yλ,
x+yρ^2 =x− 2 y+yλ
andx+y≡ 0 ≡x− 2 ymod 3. In factλis the greatest common divisor ofx+yρ
andx+yρ^2 since, for allm,n∈Z,
(m+n+nρ)(x+yρ^2 )−(n+mρ+nρ)(x+yρ)=(mx+ny)λ
and we can choosem,nso thatmx+ny=1. Sinceλ^2 =− 3 ρand sinceρis a unit,
from(x+yρ)(x+yρ^2 )= 3 b^3 and the unique factorization ofbinE, we now obtain
x+yρ=ελ(c+dρ)^3 ,
wherec,d∈Zandεis a unit. From
(x+yρ)/λ=x−λ(x+y)/ 3 =x− 3 a^3 λ
and
(c+dρ)^3 =c^3 − 3 cd^2 +d^3 + 3 cd(c−d)ρ,
by reducing mod 3 we get
ε(c^3 +d^3 )≡1mod3.
Since the units inEare± 1 ,±ρ,±ρ^2 (by the following Proposition 13), this implies
ε=±1. In fact we may supposeε=1, by changing the signs ofcandd. Equating
coefficients ofρ,wenowget
a^3 =cd(c−d).
But(c,d)=1, since(x,y)=1, and hence also(c,c−d)=(d,c−d)=1. It follows
thatc=z^31 ,d=y^31 ,c−d=x^31 for somex 1 ,y 1 ,z 1 ∈Z. Thusx 13 +y^31 =z^31 and
|x 1 y 1 z 1 |=|a|=|z/ 3 b|<|xyz|.
But this contradicts the definition ofx,y,z.