3 Multiplicative Functions 155
h(n)=
∑
d′|n′,d′′|n′′
f(d′d′′)g(n′n′′/d′d′′)
=
∑
d′|n′,d′′|n′′
f(d′)f(d′′)g(n′/d′)g(n′′/d′′)
=
∑
d′|n′
f(d′)g(n′/d′)
∑
d′′|n′′
f(d′′)g(n′′/d′′)=h(n′)h(n′′).
Proposition 27If f :N→Cis a multiplicative function, then its Dirichlet inverse
f−^1 :N→Cis also multiplicative.
Proof Assume on the contrary thatg:= f−^1 is not multiplicative and letn′,n′′be
relatively prime positive integers such thatg(n′n′′)=g(n′)g(n′′). We supposen′,n′′
chosen so that the productn=n′n′′is minimal. Since fis multiplicative,f( 1 )= 1
and henceg( 1 )=1. Consequentlyn′>1,n′′>1and
0 =
∑
d′|n′
g(d′)f(n′/d′)=
∑
d′′|n′′
g(d′′)f(n′′/d′′)=
∑
d|n
g(d)f(n/d).
But
∑
d|n
g(d)f(n/d)=g(n)f( 1 )+
∑
d′|n′,d′′|n′′,d′d′′<n
g(d′d′′)f(n′n′′/d′d′′)
=g(n)+
∑
d′|n′,d′′|n′′,d′d′′<n
g(d′)g(d′′)f(n′/d′)f(n′′/d′′)
=g(n)−g(n′)g(n′′)+
∑
d′|n′
g(d′)f(n′/d′)·
∑
d′′|n′′
g(d′′)f(n′′/d′′)
=g(n)−g(n′)g(n′′).
Thus we have a contradiction.
It follows from Propositions 26 and 27 thatunder Dirichlet multiplication the mul-
tiplicative functions form a subgroup of the group of all functionsf :N→Cwith
f( 1 )=0. The further subgroup generated byiandjcontains some interesting func-
tions. Letτ(n)denote the number of positive divisors ofn,andletσ(n)denote the
sum of the positive divisors ofn:
τ(n)=
∑
d|n
1 ,σ(n)=
∑
d|n
d.
In other words,
τ=i∗i,σ=i∗j,
and hence, by Proposition 26,τandσ are multiplicative functions. Thus they are
uniquely determined by their values at the prime powers. But ifpis prime andα∈N,
the divisors ofpαare 1,p,...,pαand hence
τ(pα)=α+ 1 ,σ(pα)=(pα+^1 − 1 )/(p− 1 ).