Number Theory: An Introduction to Mathematics

(ff) #1
9 Selected References 221

[18] M. Davis, Y. Matijasevic andJ. Robinson, Hilbert’s tenth problem. Diophantine equations:
positive aspects of a negative solution,Mathematical developments arising from Hilbert
problems(ed. F.E. Browder), pp. 323–378, Proc. Symp. Pure Math. 28 ,Part2,Amer.
Math. Soc., Providence, R.I., 1976.
[19] J.H. Evertse, An improvement of the quantitative subspace theorem,Compositio Math.
101 (1996), 225–311.
[20] G. Faltings and G. W ̈ustholz, Diophantine approximation on projective spaces,Invent.
Math. 116 (1994), 109–138.
[21] H.M. Farkas and I. Kra,Riemann surfaces, Springer-Verlag, New York, 1980.
[22] H. Ferguson, A short proof of the existence of vector Euclidean algorithms,Proc. Amer.
Math. Soc. 97 (1986), 8–10.
[23] H. Hasse,Vorlesungen ̈uber Zahlentheorie, Zweite Auflage, Springer-Verlag, Berlin, 1964.
[24] Z.-H. He and O. Schramm, On the convergence of circle packings to the Riemann map,
Invent. Math. 125 (1996), 285–305.
[25] S. Helgason,Differential geometry, Lie groups, and symmetric spaces, Academic Press,
New York, 1978. [Corrected reprint, Amer. Math. Soc., Providence, R.I., 2001]
[26] J.P. Jones and Y.V. Matijasevic, Proof of recursive insolvability of Hilbert’s tenth problem,
Amer. Math. Monthly 98 (1991) 689–709.
[27] J. Jost,Compact Riemann surfaces, transl. by R.R. Simha, Springer-Verlag, Berlin, 1997.
[28] B. Just, Generalizing the continued fraction algorithm to arbitrary dimensions,SIAM J.
Comput. 21 (1992), 909–926.
[29] S. Katok,Fuchsian groups, University of Chicago Press, 1992.
[30] J.F. Koksma,Diophantische Approximationen, Springer-Verlag, Berlin, 1936.
[31] J.C. Lagarias, Geodesic multidimensional continued fractions,Proc. London Math. Soc.
(3) 69 (1994), 464–488.
[32] J.L. Lagrange,Oeuvres, t. VII, pp. 5–180, reprinted Olms Verlag, Hildesheim, 1973.
[33] H.J. Landau, The classical moment problem: Hilbertian proofs,J. Funct. Anal. 38 (1980),
255–272.
[34] S. Lang,Number Theory III:Diophantine geometry, Encyclopaedia of Mathematical
Sciences Vol. 60, Springer-Verlag, Berlin, 1991.
[35] A. Lasjaunias, A survey of Diophantine approximation in fields of power series,Monatsh.
Math. 130 (2000), 211–229.
[36] J. Lehner,Discontinuous groups and automorphic functions, Mathematical Surveys VIII,
Amer. Math. Soc., Providence, R.I., 1964.
[37] B. de Mathan, Approximations diophantiennes dans un corps local,Bull. Soc. Math.
France Suppl. M ́em. 21 (1970), Chapitre IV.
[38] W. Narkiewicz,Elementary and analytic theory of algebraic numbers, 2nd ed., Springer-
Verlag, Berlin, 1990.
[39] W. Patz,Tafel der regelm ̈assigen Kettenbr ̈uche und ihrer vollst ̈andigen Quotienten f ̈ur die
Quadratwurzeln aus den nat ̈urlichen Zahlen von 1-10000, Akademie-Verlag, Berlin, 1955.
[40] R. P ́erez-Marco, Fixed points and circle maps,Acta Math. 179 (1997), 243–294.
[41] O. Perron,Die Lehre von den Kettenbr ̈uchen, Dritte Auflage, Teubner, Stuttgart, Band I,
1954; Band II, 1957. (Band II treats the analytic theory of continued fractions.)
[42] E.V. Podsypanin, Length of the period of a quadratic irrational,J. Soviet Math. 18 (1982),
919–923.
[43] D. Poulakis, Bounds for the minimal solution of genus zero Diophantine equations,Acta
Arith. 86 (1998), 51–90.
[44] A. Robinson and P. Roquette, On the finiteness theorem of Siegel and Mahler concerning
Diophantine equations,J. Number Theory 7 (1975), 121–176.
[45] A.M Rockett and P. Szusz,Continued fractions, World Scientific, River Edge, N.J., 1992.
[46] G. Rousseau, On a construction for the representation of a positive integer as the sum of
four squares,Enseign. Math.(2) 33 (1987), 301–306.

Free download pdf