336 VIII The Geometry of Numbers
∫
Π|φ(x)|^2 dx=∑
w∈Zn|cw|^2 ,where
cw=∫
Πφ(x)e−^2 πiwtx
dx.But
cw=∫
Π∑
z∈ZnΨ(x+z)e−^2 πiwtx
dx=
∫
Π∑
z∈ZnΨ(x+z)e−^2 πiwt(x+z)
dx,sincee^2 kπi=1 for any integerk. Hence
cw=∫
RnΨ(y)e−^2 πiwty
dy.On the other hand,
∫Π|φ(x)|^2 dx=∫
Π∑
z′,z′′∈ZnΨ(x+z′)Ψ(x+z′′)dx=
∫
Π∑
z,z′∈ZnΨ(x+z′)Ψ(x+z′+z)dx=
∫
Rn∑
z∈ZnΨ(y)Ψ(y+z)dy=∫
RnΨ(y)φ(y)dy.Substituting these expressions in Parseval’s equality, we obtain the result.
Suppose, in particular, thatΨtakes only real nonnegative values. Then so also does
φand
∫RnΨ(x)φ(x)dx≤sup
x∈Rnφ(x)∫
RnΨ(x)dx.On the other hand, omitting all terms withw=0 we obtain
∑
w∈Zn∣
∣
∣
∣
∫
RnΨ(x)e−^2 πiwtx
dx∣
∣
∣
∣
2
≥(∫
RnΨ(x)dx