3 Proof of the Prime Number Theorem 375of the function
k(t)= 1 −|t|for|t|≤ 1 ,=0for|t|≥ 1 ,has the properties
kˆ(u)≥0for−∞<u<∞, C:=∫∞
−∞kˆ(u)du<∞.Indeed
kˆ(u)=∫ 1
− 1eiut( 1 −|t|)dt= 2
∫ 1
0( 1 −t)cosut dt= 2 ( 1 −cosu)/u^2.Letε,λ,ybe arbitrary positive numbers. Ifs=ε+iλt,thenλ∫ 1
− 1eiλtyk(t)g(s)dt=λ∫ 1
− 1eiλtyk(t)∫∞
0e−εxe−iλtx{α(x)−A}dxdt=λ∫∞
0e−εx{α(x)−A}∫ 1
− 1eiλt(y−x)k(t)dtdx=λ∫∞
0e−εxα(x)kˆ(λ(y−x))dx−λA∫∞
0e−εxkˆ(λ(y−x))dx.Whenε→+0 the left side has the limit
χ(y):=λ∫ 1
− 1eiλtyk(t)γ(λt)dtand the second term on the right has the limit
λA∫∞
0kˆ(λ(y−x))dx.Consequently the first term on the right also has a finite limit. It follows that
λ∫∞
0α(x)kˆ(λ(y−x))dxis finite and is the limit of the first term on the right. Thus
χ(y)=λ∫∞
0{α(x)−A}kˆ(λ(y−x))dx=
∫λy−∞{α(y−v/λ)−A}kˆ(v)dv.