404 X A Character Study
Proof Any positive integerNcan be written in the formN=qm+r,whereq≥ 0
and 1≤r≤m.Sinceχ(a)=χ(b)ifa≡bmodm,wehave
∑Nn= 1χ(n)=(∑mn= 1+
∑^2 mn=m+ 1+···+
∑qmn=(q− 1 )m+ 1)
χ(n)+qm∑+rn=qm+ 1χ(n)=q∑mn= 1χ(n)+∑rn= 1χ(n).But
∑m
n= 1 χ(n)=0, sinceχ=χ^1. Hence∑Nn= 1χ(n)=∑rn= 1χ(n)=−∑mn=r+ 1χ(n).Since|χ(n)|=1 or 0 according as(n,m)=1or(n,m)=1, and sinceφ(m)is the
number of positive integersn≤msuch that(n,m)=1, the result follows.
With each Dirichlet characterχ, there is associated aDirichlet L-functionL(s,χ)=∑∞
n= 1χ(n)/ns.Since|χ(n)|≤1foralln, the series is absolutely convergent forσ:=Rs>1. We
are going to show that ifχ=χ 1 , then the series is also convergent forσ>0. (It does
not converge ifσ≤0, since then|χ(n)/ns|≥1 for infinitely manyn.)
Put
H(x)=∑
n≤xχ(n).Then
∑n≤xχ(n)n−s=∫x+1 −t−sdH(t)=H(x)x−s+s∫x1H(t)t−s−^1 dt.SinceH(x)is bounded, by Lemma 3, on lettingx→∞we obtain
L(s,χ)=s∫∞
1H(t)t−s−^1 dt forσ> 0.Moreover the integral on the right is uniformly convergent in any half-planeσ ≥δ,
whereδ>0, and henceL(s,χ)is a holomorphic function forσ>0.
The following discussion of DirichletL-functions and the prime number theorem
for arithmetic progressions runs parallel to that of the Riemannζ-function and the
ordinary prime number theorem in the previous chapter. Consequently we will be more
brief.