3 Proof of the Prime Number Theorem for Arithmetic Progressions 407
−f′(s)/f(s)
=− 2 ζ′(s)/ζ(s)−L′(s+iα,χ)/L(s+iα,χ)−L′(s−iα,χ)/ ̄ L(s−iα,χ) ̄
= 2
∑∞
n= 1
Λ(n)n−s+
∑∞
n= 1
χ(n)Λ(n)n−s−iα+
∑∞
n= 1
χ( ̄n)Λ(n)n−s+iα
=
∑∞
n= 2
cnn−s,
where
cn={ 2 +χ(n)n−iα+ ̄χ(n)niα}Λ(n)= 2 { 1 +R(χ(n)n−iα)}Λ(n).
Since|χ(n)|≤1and|n−iα|=1, it follows thatcn≥0foralln≥2. If we put
g(s)=
∑∞
n= 2
cnn−s/logn,
theng′(s)=f′(s)/f(s)forσ>1 and so the derivative ofe−g(s)f(s)is
{f′(s)−g′(s)f(s)}e−g(s)= 0.
Thusf(s)=Ceg(s),whereCis a constant. In factC =1, sinceg(σ)→0and
f(σ)→1asσ→+∞.Sinceg(s)is the sum of an absolutely convergent Dirichlet
series with nonnegative coefficients, so also are the powersgk(s)(k = 2 , 3 ,...).
Hence also
f(s)=eg(s)= 1 +g(s)+g^2 (s)/2!+···=
∑∞
n= 1
ann−s forσ> 1 ,
wherean≥0foreveryn. It follows from Proposition 6 that the series
∑∞
n= 1 ann
−σ
must actually converge with sumf(σ)forσ≥ 1 /2. We will show that this leads to a
contradiction.
Ta k en=p^2 ,wherepis a prime. Then, by the manner of its formation,
an≥cn/logn+cp^2 /2log^2 p
={ 2 +χ(p)^2 p−^2 iα+ ̄χ(p)^2 p^2 iα}/ 2 +{ 2 +χ(p)p−iα+ ̄χ(p)piα}^2 / 2
= 2 −χ(p)χ( ̄ p)+{ 1 +χ(p)p−iα+ ̄χ(p)piα}^2 ≥ 1 ,
since|χ(p)|≤1. Hence
f( 1 / 2 )=
∑∞
n= 1
an/n^1 /^2 ≥
∑
n=p^2
an/n^1 /^2 ≥
∑
p
1 /p.
Since
∑
p^1 /pdiverges, this is a contradiction.