Number Theory: An Introduction to Mathematics

(ff) #1
10 Selected References 445

[15] W. Ellison and F. Ellison,Prime numbers, Wiley, New York, 1985.
[16] W. Feit,Characters of finite groups, Benjamin, New York, 1967.
[17] G.B. Folland,A course in abstract harmonic analysis, CRC Press, Boca Raton, FL, 1995.
[18] T. Funakura, On characterization of DirichletL-functions,Acta Arith. 76 (1996), 305–315.
[19] T.M. Gagen,Topics in finite groups, London Mathematical Society Lecture Note Series
16 , Cambridge University Press, 1976.
[20] V.P. Gurarii,Group methods in commutative harmonic analysis, English transl. by D. and
S. Dynin, Encyclopaedia of Mathematical Sciences 25 , Springer-Verlag, Berlin, 1998.
[21] H. Hasse,Vorlesungen ̈uber Zahlentheorie, 2nd ed., Springer-Verlag, Berlin, 1964.
[22] S. Helgason,Differential geometry, Lie groups and symmetric spaces, Academic Press,
New York, 1978.
[23] E. Hewitt and K.A. Ross,Abstract harmonic analysis, 2 vols., Springer-Verlag, Berlin,
1963/1970. [Corrected reprint of Vol. I, 1979]
[24] J. Hirschfeld, The nonstandard treatment of Hilbert’s fifth problem,Trans. Amer. Math.
Soc. 321 (1990), 379–400.
[25] J.E. Humphreys,Introduction to Lie algebras and representation theory, Springer-Verlag,
New York, 1972.
[26] J.E. Humphreys,Reflection groups and Coxeter groups, Cambridge University Press,
Cambridge, 1990.
[27] B. Huppert,Character theory of finite groups,de Gruyter, Berlin, 1998.
[28] N. Jacobson,Lie algebras, Interscience, New York, 1962.
[29] T. Janssen,Crystallographic groups, North-Holland, Amsterdam, 1973.
[30] V.G. Kac,Infinite dimensional Lie Algebras, corrected reprint of 3rd ed., Cambridge
University Press, Cambridge, 1995.
[31] S. Lang,Algebraic number theory, 2nd ed., Springer-Verlag, New York, 1994.
[32] R.P. Langlands, Representation theory: its rise and its role in number theory,Proceedings
of the Gibbs symposium(ed. D.G. Caldi and G.D. Mostow), pp. 181–210, Amer. Math.
Soc., Providence, Rhode Island, 1990.
[33] G. Lejeune-Dirichlet,We r k e, reprinted in one volume, Chelsea, New York, 1969.
[34] L.H. Loomis,An introduction to abstract harmonic analysis, Van Nostrand, New York,
1953.
[35] G.W. Mackey, Harmonic analysis as the exploitation of symmetry - a historical survey,
Bull. Amer. Math. Soc.(N.S.) 3 (1980), 543–698. [Reprinted, with related articles, in
G.W. Mackey,The scope and history of commutative and noncommutative harmonic
analysis, American Mathematical Society, Providence, R.I., 1992]
[36] P.H. Meijer (ed.),Group theory and solid state physics:a selection of papers,Vol.1,
Gordon and Breach, New York, 1964.
[37] L. Nachbin,The Haar integral, reprinted, Krieger, Huntington, New York, 1976.
[38] J. Niederle, The unusual algebras and their applications in particle physics,Czechoslovak
J. Phys. B 30 (1980), 1–22.
[39] L.S. Pontryagin,Topological groups, English transl. of 2nd ed. by A. Brown, Gordon and
Breach, New York, 1966. [Russian original, 1954]
[40] K. Prachar,Primzahlverteilung, Springer-Verlag, Berlin, 1957.
[41] N. Sedrakian and J. Steinig, A particular case of Dirichlet’s theorem on arithmetic
progressions,Enseign. Math. 44 (1998), 3–7.
[42] J.-P. Serre,Linear representations of finite groups, Springer-Verlag, New York, 1977.
[43] V.S. Varadarajan,Lie groups, Lie algebras and their representations, corrected reprint,
Springer-Verlag, New York, 1984.
[44] F.W. Warner,Foundations of differentiable manifolds and Lie groups, corrected reprint,
Springer-Verlag, New York, 1983.
[45] L. Washington, On the self-duality ofQp,Amer. Math. Monthly 81 (1974), 369–371.

Free download pdf