3 Birkhoff’s Ergodic Theorem 471Suppose now that (i) holds and let f∈L(X,B,μ). Then the functionf∗in the
statement of Theorem 17 must be constant a.e. Moreover, ifγis its constant value, we
must have
γ=∫
Xf∗dμ=∫
Xfdμ.Thus (i) implies (ii).
Suppose next that (ii) holds and letA,B∈B. Then, for almost allx∈X,
lim
n→∞
n−^1n∑− 1k= 0χA(Tkx)=∫
XχAdμ=μ(A).Hence, for almost allx∈X,
lim
n→∞
n−^1∑n−^1k= 0χA(Tkx)χB(x)=μ(A)χB(x)and so, by the dominated convergence theorem,
μ(A)μ(B)=∫
Xlim
n→∞
n−^1n∑− 1k= 0χA(Tkx)χB(x)dμ(x)= lim
n→∞
n−^1n∑− 1k= 0∫
XχA(Tkx)χB(x)dμ(x)= lim
n→∞
n−^1n∑− 1k= 0μ(T−kA∩B).Thus (ii) implies (iii).
⋃Suppose now that (iii) holds and chooseC ∈ Bwithμ(C)>0. PutA =
n≥ 0 T
−nCandB=(⋃
n≥ 1 T−nC)c. Then, for everyk≥1,T−kA⊆⋃
n≥ 1 T−nCand henceμ(T−kA∩B)=0. Thus
n−^1n∑− 1k= 0μ(T−kA∩B)=μ(A∩B)/n→0asn→∞.Sinceμ(A)≥μ(C)>0, it follows from (iii) thatμ(B)=0. Thus (iii) implies (iv).
Next choose anyA,B∈Bsuch thatμ(A)>0,μ(B)>0. If (iv) holds, then
μ(
⋃
n≥ 1 T−nA)=1 and henceμ(B)=μ(
B∩∪
n≥ 1T−nA)
=μ(
∪
n≥ 1(B∩T−nA))
.
Sinceμ(B)>0, it follows thatμ(B∩T−nA)>0forsomen>0. Thus (iv) implies
(v).
Finally chooseA∈BwithT−^1 A=Aand putB=Ac. Then, for everyn≥1,
we haveμ(T−nA∩B)=μ(A∩B)=0. If (v) holds, it follows that eitherμ(A)= 0
orμ(B)=0. Hence (v) implies thatTis ergodic.