Number Theory: An Introduction to Mathematics

(ff) #1
7 Selected References 491

[14] I. Dupain and V.T. S ́os, On the discrepancy of (nα) sequences,Topics in classical number
theory(ed. G. Hal ́asz), Vol. I, pp. 355–387, North-Holland, Amsterdam, 1984.
[15] H. Dym and H.P. McKean,Fourier series and integrals, Academic Press, Orlando, FL,
1972.
[16] P. and T. Ehrenfest,The conceptual foundations of the statistical approach in mechanics,
English translation by M.J. Moravcsik, Cornell University Press, Ithaca, 1959. [German
original, 1912]
[17] H. Furstenberg,Recurrence in ergodic theory and combinatorial number theory, Princeton
University Press, 1981.
[18] H. Furstenberg and Y. Katznelson, A density version of the Hales–Jewett theorem,
J. Analyse Math. 57 (1991), 64–119.
[19] W.T. Gowers, A new proof of Szemeredi’s theorem,Geom. Funct. Anal. 11 (2001),
465–588.
[20] R.L. Graham, B.L. Rothschild and J.H. Spencer,Ramsey theory, 2nd ed., Wiley,
New York, 1990.
[21] S.W. Graham and G. Kolesnik,Van der Corput’s method of exponential sums, London
Math. Soc. Lecture Notes 126 , Cambridge University Press, 1991.
[22] P.R. Halmos,Measure theory, 2nd printing, Springer-Verlag, New York, 1974.
[23] D.M. Hardcastle and K. Khanin, Continued fractions and thed-dimensional Gauss
transformation,Comm. Math. Phys. 215 (2001), 487–515.
[24] B. Jessen and H. Tornehave, Mean motion and zeros of almost periodic functions,Acta
Math. 77 (1945), 137–279.
[25] A. Katok and B. Hasselblatt,Introduction to the modern theory of dynamical systems,
Cambridge University Press, 1995.
[26] Y. Katznelson and B. Weiss, A simple proof of some ergodic theorems,Israel J. Math. 42
(1982), 291–296.
[27] J.H.B. Kemperman, Distributions modulo 1 of slowly changing sequences,Nieuw Arch.
Wisk.(3) 21 (1973), 138–163.
[28] J.F.C. Kingman, Subadditive processes,Ecole d’Et ́e de Probabilit ́es de Saint-FlourV-1975
(ed. A. Badrikian), pp. 167–223, Lecture Notes in Mathematics 539 , Springer-Verlag,
1976.
[29] U. Krengel,Ergodic theorems, de Gruyter, Berlin, 1985.
[30] L. Kuipers and H. Niederreiter,Uniform distribution of sequences, Wiley, New York, 1974.
[31] J.C. Lagarias, The 3x+1 problem and its generalizations,Amer. Math. Monthly 92
(1985), 3–23.
[32] M. Lo`eve,Probability theory, 4th ed. in 2 vols., Springer-Verlag, New York, 1978.
[33] D.H. Mayer, On the thermodynamic formalism for the Gauss map,Comm. Math. Phys.
130 (1990), 311–333.
[34] G. Mills, A quintessential proof of van der Waerden’s theorem on arithmetic progressions,
Discrete Math. 47 (1983), 117–120.
[35] H.L. Montgomery,Ten lectures on the interface between analytic number theory and
harmonic analysis, CBMS Regional Conference Series in Mathematics 84 , American
Mathematical Society, Providence, R.I., 1994.
[36] H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers,Bull. Amer.
Math. Soc. 84 (1978), 957–1041.
[37] H. Niederreiter,Random number generation and quasi-Monte Carlo methods, CBMS–
NSF Regional Conference Series in Applied Mathematics 63 , SIAM, Philadelphia, 1992.
[38] H. Niederreiter and W. Philipp, Berry–Esseen bounds and a theorem of Erd ̈os and Tur ́an
on uniform distribution mod 1,Duke Math. J. 40 (1973), 633–649.
[39] K. Petersen,Ergodic theory, Cambridge University Press, 1983.
[40] W. Philipp and O.P. Stackelberg, Zwei Grenzwerts ̈atze f ̈ur Kettenbr ̈uche,Math. Ann. 181
(1969), 152–156.

Free download pdf