496 XII Elliptic Functions
where
σ=α^2 cos^2 θ+β^2 sin^2 θ.If we now put
u^2 =( 1 −r^2 )/( 1 −σr^2 ),thenr^2 =( 1 −u^2 )/( 1 −σu^2 )and
rdr/du=−( 1 −σ)u/( 1 −σu^2 )^2.Hence
S=ab∫π/ 20dθ∫ 1
0( 1 −σ)( 1 −σu^2 )−^2 du.Inverting the order of integration and givingσits value, we obtain
S=ab
∫ 1
0du∫π/ 20[( 1 −α^2 )cos^2 θ+( 1 −β^2 )sin^2 θ]×[( 1 −α^2 u^2 )cos^2 θ+( 1 −β^2 u^2 )sin^2 θ]−^2 dθ.It is readily verified that
∫π/ 20cos^2 θ(mcos^2 θ+nsin^2 θ)−^2 dθ=π/ 4 m(mn)^1 /^2 ,
∫π/ 20sin^2 θ(mcos^2 θ+nsin^2 θ)−^2 dθ=π/ 4 n(mn)^1 /^2.Thus we obtain finally
S=(πab/ 4 )∫ 1
0[( 1 −α^2 )/( 1 −α^2 u^2 )+( 1 −β^2 )/( 1 −β^2 u^2 )]×[( 1 −α^2 u^2 )( 1 −β^2 u^2 )]−^1 /^2 du.By anelliptic integralone understands today any integral of the form
∫
R(x,w)dx,whereR(x,w)is a rational function ofxandw,andwherew^2 =g(x)is a polynomial
inxof degree 3 or 4 without repeated roots. The elliptic integral is said to becomplete
if it is a definite integral in which the limits of integration are distinct roots ofg(x).
The case of a quartic is easily reduced to that of a cubic. In the preceding examples
we can simply puty=x^2. Thus, for the lemniscate,
s(Θ)= 2 −^1 /^2∫Y
0[4y( 1 −y)( 1 −y/ 2 )]−^1 /^2 dy.