508 XII Elliptic Functions
It follows that
πK(a,c)/ 2 K(a,b)=log( 4 a 1 /c 0 )−
∑∞
n= 1
2 −nlog(an/an+ 1 ). (4)
Finally, to determineE(a,c)we can use the relation
K(a,b)E(a,c)+K(a,c)E(a,b)−a^2 K(a,b)K(a,c)=π/ 2.
By homogeneity we need only establish this relation fora=1. Since
K( 1 ,( 1 −λ)^1 /^2 )=
∫ 1
0
[4x( 1 −x)( 1 −λx)]−^1 /^2 dx,
E( 1 ,( 1 −λ)^1 /^2 )=
∫ 1
0
[( 1 −λx)/ 4 x( 1 −x)]^1 /^2 dx,
it is in fact equivalent to the following relation, due to Legendre, between the complete
elliptic integrals of the first and second kinds:
Proposition 1If
K(λ)=
∫ 1
0
[4x( 1 −x)( 1 −λx)]−^1 /^2 dx, E(λ)=
∫ 1
0
[( 1 −λx)/ 4 x( 1 −x)]^1 /^2 dx,
then
K(λ)E( 1 −λ)+K( 1 −λ)E(λ)−K(λ)K( 1 −λ)=π/ 2 for 0 <λ< 1. (5)
Proof We show first that the derivative of the left side of (5) is zero. Evidently
dE/dλ=−( 1 / 2 )
∫ 1
0
x[4x( 1 −x)( 1 −λx)]−^1 /^2 dx=[E(λ)−K(λ)]/ 2 λ.
Similarly,
dK/dλ=( 1 / 2 )
∫ 1
0
x( 1 −λx)−^1 [4x( 1 −x)( 1 −λx)]−^1 /^2 dx.
Substitutingx=( 1 −u)/( 1 −λu)and writingλ′= 1 −λ, we obtain
dK/dλ=( 1 / 2 λ′)
∫ 1
0
[( 1 −u)/ 4 u( 1 −λu)]^1 /^2 du
=[E(λ)−λ′K(λ)]/ 2 λλ′.
It follows that
d(λλ′dK/dλ)/dλ=K/ 4.
Thusy 1 (λ)=K(λ)is a solution of the second order linear differential equation
d(λλ′dy/dλ)/dλ−y/ 4 = 0. (6)