Number Theory: An Introduction to Mathematics

(ff) #1
12 Selected References 81

[38] J.E. Humphreys,Reflection groups and Coxeter groups, Cambridge University Press, 1990.
[39] E.V. Huntingdon, Boolean algebra: A correction,Trans. Amer. Math. Soc. 35 (1933),
557–558.
[40] J. Jachymski, A short proof of the converse to the contraction principle and some related
results,Topol. Methods Nonlinear Anal. 15 (2000), 179–186.
[41] N. Jacobson,Basic Algebra I,II, 2nd ed., Freeman, New York, 1985/1989.
[42] F. Kasch,Modules and rings, English transl. by D.A.R. Wallace, Academic Press, London,
1982.
[43] B.M. Kiernan, The development of Galois theory from Lagrange to Artin,Arch. Hist.
Exact Sci. 8 (1971), 40–154.
[44] W. Kulpa, The Poincar ́e–Miranda theorem,Amer. Math. Monthly 104 (1997), 545–550.
[45] E. Kunz,Introduction to commutative algebra and algebraic geometry, English transl. by
M. Ackerman, Birkh ̈auser, Boston, Mass., 1985.
[46] T.Y. Lam,A first course in noncommutative rings, Springer-Verlag, New York, 1991.
[47] E. Landau,Foundations of analysis, English transl. by F. Steinhardt, 3rd ed., Chelsea,
New York, 1966. [German original, 1930]
[48] S. Lang,Algebra, corrected reprint of 3rd ed., Addison-Wesley, Reading, Mass., 1994.
[49] W. Maak,Fastperiodische Funktionen, Springer-Verlag, Berlin, 1950.
[50] A.I. Mal’cev,Foundations of linear algebra, English transl. by T.C. Brown, Freeman,
San Francisco, 1963.
[51] B.H. Matzat,Uber das Umkehrproblem der Galoisschen Theorie, ̈ Jahresber. Deutsch.
Math.-Ve re i n. 90 (1988), 155–183.
[52] K. Menninger,Number words and number symbols, English transl. by P. Broneer, M.I.T.
Press, Cambridge, Mass., 1969.
[53] L. Mirsky,Transversal theory, Academic Press, London, 1971.
[54] P. Morandi,Field and Galois theory, Springer, New York, 1996.
[55] T. Nagahara and H. Tominaga, Elementary proofs of a theorem of Wedderburn and a
theorem of Jacobson,Abh. Math. Sem. Univ. Hamburg 41 (1974), 72–74.
[56] R. Narasimhan,Complex analysis in one variable,Birkh ̈auser, Boston, Mass., 1985.
[57] A.H. Read, Higher derivatives of analytic functions from the standpoint of functional
analysis,J. London Math. Soc. 36 (1961), 345–352.
[58] F. Riesz and B. Sz.-Nagy,Functional analysis, English transl. by L.F. Boron of 2nd
French ed., F. Ungar, New York, 1955.
[59] H. Rothe, Systeme geometrischer Analyse, Encyklop ̈adie der Mathematischen
WissenschaftenIII 1.2, pp. 1277–1423, Teubner, Leipzig, 1914–1931.
[60] J.J. Rotman,An introduction to the theory of groups, 4th ed., Springer-Verlag, New York,
1995.
[61] J. Rotman,Galois theory, 2nd ed., Springer-Verlag, New York, 1998.
[62] S. Rudeanu,Boolean functions and equations, North-Holland, Amsterdam, 1974.
[63] W. Rudin,Principles of mathematical analysis, 3rd ed., McGraw-Hill, New York, 1976.
[64] N.A. Salingaros and G.P. Wene, The Clifford algebra of differential forms,Acta Appl.
Math. 4 (1985), 271–292.
[65] D.B. Shapiro, Products of sums of squares,Exposition. Math. 2 (1984), 235–261.
[66] R. Sikorski,Boolean algebras, 3rd ed., Springer-Verlag, New York, 1969.
[67] T.A. Springer and F.D. Veldkamp,Octonions, Jordan algebras, and exceptional groups,
Springer, Berlin, 2000.
[68] E. Steinitz,Algebraische Theorie der K ̈orper, reprinted, Chelsea, New York, 1950.
[69] M.H. Stone, The representation of Boolean algebras,Bull. Amer. Math. Soc. 44 (1938),
807–816.
[70] K.D. Stroyan and W.A.J. Luxemburg,Introduction to the theory of infinitesimals,
Academic Press, New York, 1976.

Free download pdf