82 NUMBER AND ALGEBRA
[Checking, using the quadratic formula:
x=
−(−6)±
√
[(−6)^2 −(4)(4)(−7)]
(2)(4)
=
6 ± 12. 166
8
=−0.771 and 2.27,
correct to 3 significant figures]
[Note on accuracy and errors.Depending on the
accuracy of evaluating thef(x+δ) terms, one or two
iterations (i.e. successive approximations) might be
saved. However, it is not usual to work to more than
about 4 significant figures accuracy in this type of
calculation. If a small error is made in calculations,
the only likely effect is to increase the number of
iterations.]
Problem 5. Determine the value of the
smallest positive root of the equation
3 x^3 − 10 x^2 + 4 x+ 7 =0, correct to 3 significant
figures, using an algebraic method of successive
approximations.
The functional notation method is used to find the
value of the first approximation.
f(x)= 3 x^3 − 10 x^2 + 4 x+ 7
f(0)=3(0)^3 −10(0)^2 +4(0)+ 7 = 7
f(1)=3(1)^3 −10(1)^2 +4(1)+ 7 = 4
f(2)=3(2)^3 −10(2)^2 +4(2)+ 7 =− 1
Following the above procedure:
First approximation
(a) Let the first approximation be such that it divides
the interval 1 to 2 in the ratio of 4 to−1, i.e. let
x 1 be 1.8.
Second approximation
(b) Let the true value of the root,x 2 ,be(x 1 +δ 1 ).
(c) Letf(x 1 +δ 1 )=0, then sincex 1 = 1 .8,
3(1. 8 +δ 1 )^3 −10(1. 8 +δ 1 )^2
+4(1. 8 +δ 1 )+ 7 = 0
Neglecting terms containing products ofδ 1 and
using the binomial series gives:
3[1. 83 +3(1.8)^2 δ 1 ]−10[1. 82 +(2)(1.8)δ 1 ]
+4(1. 8 +δ 1 )+ 7 ≈ 0
3(5. 832 + 9. 720 δ 1 )− 32. 4 − 36 δ 1
+ 7. 2 + 4 δ 1 + 7 ≈ 0
17. 496 + 29. 16 δ 1 − 32. 4 − 36 δ 1
+ 7. 2 + 4 δ 1 + 7 ≈ 0
δ 1 ≈
− 17. 496 + 32. 4 − 7. 2 − 7
29. 16 − 36 + 4
≈−
0. 704
2. 84
≈− 0. 2479
Thusx 2 ≈ 1. 8 − 0. 2479 = 1. 5521
Third approximation
(d) Let the true value of the root,x 3 ,be(x 2 +δ 2 ).
(e) Letf(x 2 +δ 2 )=0, then sincex 2 = 1 .5521,
3(1. 5521 +δ 2 )^3 −10(1. 5521 +δ 2 )^2
+4(1. 5521 +δ 2 )+ 7 = 0
Neglecting terms containing products of δ 2
gives:
11. 217 + 21. 681 δ 2 − 24. 090 − 31. 042 δ 2
+ 6. 2084 + 4 δ 2 + 7 ≈ 0
δ 2 ≈
− 11. 217 + 24. 090 − 6. 2084 − 7
21. 681 − 31. 042 + 4
≈
− 0. 3354
− 5. 361
≈ 0. 06256
Thusx 3 ≈ 1. 5521 + 0. 06256 ≈ 1. 6147
(f) Values ofx 4 andx 5 are found in a similar way.
f(x 3 +δ 3 )=3(1. 6147 +δ 3 )^3 −10(1. 6147
+δ 3 )^2 +4(1. 6147 +δ 3 )+ 7 = 0
givingδ 3 ≈ 0 .003175 andx 4 ≈ 1 .618, i.e. 1.62
correct to 3 significant figures
f(x 4 +δ 4 )=3(1. 618 +δ 4 )^3 −10(1. 618
+δ 4 )^2 +4(1. 618 +δ 4 )+ 7 = 0
givingδ 4 ≈ 0 .0000417, andx 5 ≈ 1 .62, correct
to 3 significant figures.